Potential function of CbuSPL and gene encoding its interacting protein during flowering in Catalpa bungei.

BMC Plant Biol

Present address: State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, People's Republic of China.

Published: March 2020

Background: "Bairihua", a variety of the Catalpa bungei, has a large amount of flowers and a long flowering period which make it an excellent material for flowering researches in trees. SPL is one of the hub genes that regulate both flowering transition and development.

Results: SPL homologues CbuSPL9 was cloned using degenerate primers with RACE. Expression studies during flowering transition in "Bairihua" and ectopic expression in Arabidopsis showed that CbuSPL9 was functional similarly with its Arabidopsis homologues. In the next step, we used Y2H to identify the proteins that could interact with CbuSPL9. HMGA, an architectural transcriptional factor, was identified and cloned for further research. BiFC and BLI showed that CbuSPL9 could form a heterodimer with CbuHMGA in the nucleus. The expression analysis showed that CbuHMGA had a similar expression trend to that of CbuSPL9 during flowering in "Bairihua". Intriguingly, ectopic expression of CbuHMGA in Arabidopsis would lead to aberrant flowers, but did not effect flowering time.

Conclusions: Our results implied a novel pathway that CbuSPL9 regulated flowering development, but not flowering transition, with the participation of CbuHMGA. Further investments need to be done to verify the details of this pathway.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7060540PMC
http://dx.doi.org/10.1186/s12870-020-2303-zDOI Listing

Publication Analysis

Top Keywords

flowering transition
12
flowering
9
catalpa bungei
8
ectopic expression
8
cbuspl9
6
expression
5
potential function
4
function cbuspl
4
cbuspl gene
4
gene encoding
4

Similar Publications

Aging-dependent temporal regulation of MIR156 epigenetic silencing by CiLDL1 and CiNF-YB8 in chrysanthemum.

New Phytol

January 2025

Frontiers Science Center for Molecular Design Breeding (MOE), Department of Ornamental Horticulture, College of Horticulture, China Agricultural University, Beijing, 100193, China.

Temporal decline in microRNA miR156 expression is crucial for the transition to, and maintenance of, the adult phase and flowering competence in flowering plants. However, the molecular mechanisms underlying the temporal regulation of miR156 reduction remain largely unknown. Here, we investigated the epigenetic mechanism regulating the temporal silencing of cin-MIR156 in wild chrysanthemum (Chrysanthemum indicum), focusing on the role of the lysine-specific demethylase CiLDL1 and the nuclear factor Y complex.

View Article and Find Full Text PDF

In our work, we report superior electrochemical performance of optimized 3D nanostructured, nickel-cobalt carbonate hydroxide hydrate (NiCo-CHH (1 ≤ x ≤ 2)) materials with flower like morphology synthesised via one-step hydrothermal methods. A Ni rich sample (x = 1) demonstrate better specific capacitance and the improvement is attributed to more oxygen deficient neighbourhood of Ni compared to that of Co. The structural, morphological and electronic properties of the samples were investigated using X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), High resolution transmission electron microscopy (HRTEM), field emission electron microscopy (FESEM), Energy-dispersive X-ray spectroscopy (EDX), and X-ray photoelectron spectroscopy (XPS).

View Article and Find Full Text PDF

In flowering plants, MADS-box genes play regulatory roles in flower induction, floral initiation, and floral morphogenesis. (. ) is a traditional Chinese medicinal plant.

View Article and Find Full Text PDF

Poly(-lysine)--poly(ethylene glycol)--poly(-lysine) triblock copolymers for the preparation of flower micelles and their irreversible hydrogel formation.

Sci Technol Adv Mater

November 2024

Department of Materials Science, Institute of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan.

Poly(-lysine)--poly(ethylene glycol)--poly(-lysine) (PLys--PEG--PLys) triblock copolymers formed polyion complex (PIC) with poly(acrylic acid) (PAAc) or sodium poly(styrenesulfonate) (PSS), leading to the formation of flower micelle-type nanoparticles (Nano or Nano) with tens of nanometers size in water at a polymer concentration of 10 mg/mL. The flower micelles exhibited irreversible temperature-driven sol-gel transitions at physiological ionic strength, even at low polymer concentrations such as 40 mg/mL, making them promising candidates for injectable hydrogel applications. Rheological studies showed that the chain length of PLys segments and the choice of polyanions significantly impacted irreversible hydrogel formation, with PSS being superior to PAAc for the formation.

View Article and Find Full Text PDF

Flowering is initiated in response to environmental cues, with the photoperiod and ambient temperature being the main ones. The regulatory pathways underlying floral transition are well studied in but remain largely unknown in legumes. Here, we first applied an in silico approach to infer the regulatory inputs of four -like genes of the narrow-leafed lupin .

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!