Ingestion is the preferred way for drug administration. However, many drugs have poor oral bioavailability, warranting the use of injections. Extracellular vesicles (EVs) from cow milk have shown potential utility in improving oral drug bioavailability. However, EVs produced by intestinal epithelial cells have not been investigated for this application. We compared the capacity of cow milk EVs and intestinal epithelial cell-derived counterparts to enhance oral drug bioavailability. EVs were isolated, fluorescently labelled, and loaded with curcumin (CUR) as a model poorly absorbable drug. These were then characterised before testing in an intestinal model (Caco-2). Epithelial cell-derived EVs showed notably higher cell uptake compared to cow milk EVs. Cell uptake was significantly higher in differentiated compared to undifferentiated cells for both types of EVs. While both milk- and cell-derived EVs improved the cell uptake and intestinal permeability of CUR (confirming oral drug bioavailability enhancement potential), epithelial cell EVs demonstrated a superior effect.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7150822 | PMC |
http://dx.doi.org/10.3390/pharmaceutics12030226 | DOI Listing |
Vet Res Commun
January 2025
Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, China.
Colostrum, the initial mammary secretion produced by various mammals following birth, is a conduit for maternal immunity transfer in diverse mammalian species. Concurrently, many cellular processes are occurring in the neonatal small intestine to prepare it to receive molecular signals from a superfood essential for the neonate's health and development. During the prepartum colostrum secretion, the newborn intestine undergoes transient alterations in the intestinal barrier, primarily regulating immunoglobulin absorption.
View Article and Find Full Text PDFCurr Microbiol
January 2025
Razi Vaccine and Serum Research Institute (RVSRI), Agricultural Research, Education and Organization (AREEO), Karaj, Iran.
Brucella spp. is the bacterium responsible for brucellosis, a zoonotic infection that affects humans. This disease poses significant health challenges and contributes to poverty, particularly in developing countries.
View Article and Find Full Text PDFTrop Anim Health Prod
January 2025
Department of Animal Production, Faculty of Agriculture, Menoufia University, Shibin Al Kawm, Egypt.
This article aims to explore milking-ability criteria of Holstein dairy cattle under intensive production system in Egypt and investigate some managerial factors that influence them in dairy farms. The data obtained from five herds belong to a commercial intensive production system farm, Egypt. Data included 3509 records.
View Article and Find Full Text PDFArch Dis Child
December 2024
Research Department of Behavioural Science and Health, University College London, London, UK.
Objectives: To understand (1) healthcare professionals' (HCPs) perceptions and experiences of commercial milk formula (CMF) marketing to consumers and HCPs and (2) HCPs' perspectives on regulation of CMF marketing.
Setting: UK.
Design: In-person and online interviews with 41 HCPs with regular contact with pregnant women and mothers.
J Clin Med
January 2025
Division of Neonatal-Perinatal Medicine, Department of Pediatrics, University of Texas, Southwestern Medical Center, Dallas, TX 75390, USA.
The risk of neonatal SARS-CoV-2 infection from the mother's own milk (MoM) in neonates who are exposed to maternal SARS-CoV-2 during the perinatal period remains unclear. We conducted a systematic review to assess the association between MoM feeding and neonatal SARS-CoV-2 infection in neonates who were born to SARS-CoV-2-positive pregnant persons. PubMed Central and Google Scholar were searched for studies published by 14 March 2024 that reported neonatal SARS-CoV-2 infection by feeding type.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!