Designing Micro Bulge Structure with Uniform PS Microspheres for Boosted Dielectric Hydrophobic Blend Films.

Polymers (Basel)

School of Materials Science and Engineering, State Key Lab Silicon Mat, Zhejiang University, Hangzhou 310027, China.

Published: March 2020

AI Article Synopsis

  • The study synthesized polystyrene (PS) microspheres in sizes of 40 nm, 80 nm, and 120 nm using a solvothermal method, highlighting the importance of temperature control.
  • The research created composite films using polystyrene, polydimethylsiloxane, and P(VDF-TrFE), which showed increased dielectric constant and hydrophobicity by adjusting the PS content and particle size.
  • The composite films demonstrated significantly enhanced properties, such as a dielectric constant of 29 and a contact angle of 126°, indicating their potential for use in electric wetting devices.

Article Abstract

In this paper, homogeneous polystyrene (PS) microspheres with controllable sizes of 40 nm, 80 nm, and 120 nm were synthesized by controlling the temperature of solvothermal method. In order to explore the effect of PS microspheres on dielectric-hydrophobic properties of the composite films, the composite films containing polystyrene, Polydimethylsiloxane, and P(VDF-TrFE) with high dielectric and hydrophobicity were successfully prepared by a simple and feasible solution blending method. The dielectric constant and hydrophobicity of composite films were boosted by increasing the mass fraction of PS content and decreasing the size of PS due to the enhanced interfacial polarization and the uniform surface micro bulge structure. Meanwhile, the composite films maintain a low loss tangent. Typically, the dielectric constant with 5 wt.% 40 nm PS reached to 29 at 100Hz, which is 4 times that of PDMS/P(VDF-TrFE) (mass ratio: 2/3). Otherwise, the largest the contact angle of 126° in the same composition was remarkably larger than the pure PDMS/P(VDF-TrFE) (110°). These improved properties have more potential applications in the electric wetting devices.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7182817PMC
http://dx.doi.org/10.3390/polym12030574DOI Listing

Publication Analysis

Top Keywords

composite films
16
micro bulge
8
bulge structure
8
dielectric constant
8
films
5
designing micro
4
structure uniform
4
uniform microspheres
4
microspheres boosted
4
dielectric
4

Similar Publications

High performance humidity sensor based on a graphene oxide-chitosan composite.

Phys Chem Chem Phys

January 2025

Temperature and Humidity Metrology, CSIR-National Physical Laboratory, Dr K. S. Krishnan Marg, New Delhi, 110012, India.

In this study, we have proposed an advanced humidity sensor based on a composite of chitosan (CS) and graphene oxide (GO), prepared by the drop casting method. Graphene oxide-chitosan (GO-CS) films with varying volumetric ratios, along with pure GO and CS films, were prepared and extensively characterized using XRD, Raman, FTIR, SEM, XPS, and water contact angle to study their structural and morphological properties. Comparative analysis of humidity sensing parameters of all prepared films revealed that the film with a volumetric ratio of 4 : 1 (GOCS-2) performs best among all of them, which is attributed to the synergistic interaction between GO and CS.

View Article and Find Full Text PDF

The increasing demand for sustainable food packaging has driven the development of films based on biopolymers. However, enhancing their functional properties remains a challenge. In the current study, potato starch-pectin (PSP) composite films were fabricated and enriched with juniper berry essential oil (JBEO) to improve their physicochemical properties.

View Article and Find Full Text PDF

Polymers have been ruling the packaging industry for decades due to their versatility, easy manufacturability, and low cost. The overuse of non-biodegradable plastics in food packaging has become a serious environmental concern. Multi-walled carbon nanotube (MWCNT) reinforced nanocomposites have exceptional electrical, thermal, and mechanical properties.

View Article and Find Full Text PDF

Coaxial Direct Ink Writing of Cholesteric Liquid Crystal Elastomers in 3D Architectures.

Adv Mater

January 2025

Department of Materials Science and Engineering, University of Pennsylvania, 3231 Walnut Street, Philadelphia, PA, 19104, USA.

Cholesteric liquid crystal elastomers (CLCEs) hold great promise for mechanochromic applications in anti-counterfeiting, smart textiles, and soft robotics, thanks to the structural color and elasticity. While CLCEs are printed via direct ink writing (DIW) to fabricate free-standing films, complex 3D structures are not fabricated due to the opposing rheological properties necessary for cholesteric alignment and multilayer stacking. Here, 3D CLCE structures are realized by utilizing coaxial DIW to print a CLC ink within a silicone ink.

View Article and Find Full Text PDF

Photostimulus-responsive fluorescent materials are promising for anticounterfeiting and UV printing due to rapid response and simple preparation. In this paper, we propose a novel strategy to prepare photostimulus-responsive materials SP@HOF-olefin by integrating the photochromic molecule spiropyran (SP) with postsynthetic modified hydrogen-bonded organic frameworks (HOF-olefin). Compared to SP@HOF, the composites SP@HOF-olefin exhibit enhanced photochromic properties, such as a fast response speed, pronounced color contrast, and exceptional fatigue resistance.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!