Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Rho GTPases, including Rho, Cdc42, Rac and ROP subfamilies, are key signaling molecules in RNA polymerase II (Pol II) transcriptional control. Our prior work has shown that plant ROP and yeast Cdc42 GTPases similarly modulate Ser2 and Ser5 phosphorylation status of the C-terminal domain (CTD) of the Pol II largest subunit by regulating CTD phosphatase degradation. Here, we present genetic and pharmacological evidence showing that Cdc42 and Rac1 GTPase signaling modulates a similar CTD Ser2 and Ser5 phosphorylation code in cultured human cancer cells. While siRNA knockdown of and , respectively, in HeLa cells increased the level of CTD Ser phosphatases RPAP2 and FCP1, they both decreased the level of CTD kinases CDK7 and CDK13. In addition, the protein degradation inhibitor MG132 reversed the effect of THZ1, a CDK7 inhibitor which could decrease the cell number and amount of CDK7 and CDK13, accompanied by a reduction in the level of CTD Ser2 and Ser5 phosphorylation and DOCK4 and DOCK9 (the activators for Rac1 and Cdc42, respectively). Conversely, treatments of Torin1 or serum deprivation, both of which promote protein degradation, could enhance the effect of THZ1, indicating the involvement of protein degradation in controlling CDK7 and CDK13. Our results support an evolutionarily conserved signaling shortcut model linking Rho GTPases to Pol II transcription across three kingdoms, Fungi, Plantae and Animalia, and could lead to the development of a potential synthetic-lethal strategy in controlling cancer cell proliferation or death.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7140432 | PMC |
http://dx.doi.org/10.3390/cells9030621 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!