There is increasing interest in effects of radionuclides on non-human species, but methods for studying such effects are not well developed. The aims of the current study were to investigate the effects of uranium mine-affected sediments on non-biting midge Chironomus riparius and to compare sensitivity of different endpoints. The midge larvae were exposed in controlled laboratory conditions to sediments from two ponds downstream from an abandoned uranium mine and a reference pond not receiving water from the mining site. Quartz sand was used as an additional control. Developmental effects were assessed by evaluating emergence of adult midges, body mass, and fluctuating asymmetry (FA) in the length of wing upper vein. FA has been suggested to be a sensitive indicator of developmental instability, but the results of previous studies are inconsistent. In the present study, no difference in FA was observed between the treatment groups, but time to emergence was significantly delayed in the contaminated sediments. The approach used in this study (laboratory experiments with sediments from a contaminated site) avoids confounding due to uncontrolled environmental variables and adaptation to long-term contamination, which may mask effects on natural populations. Using this approach, we found no effects on FA of wing length. Time to emergence, in contrast, was found to be a more sensitive endpoint.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2020.137496 | DOI Listing |
Sci Rep
January 2025
Department of Life Sciences, Imperial College, London, SW7 2AZ, UK.
Many cellular patterns exhibit a reaction-diffusion component, suggesting that Turing instability may contribute to pattern formation. However, biological gene-regulatory pathways are more complex than simple Turing activator-inhibitor models and generally do not require fine-tuning of parameters as dictated by the Turing conditions. To address these issues, we employ random matrix theory to analyze the Jacobian matrices of larger networks with robust statistical properties.
View Article and Find Full Text PDFEcol Evol
January 2025
Department of Zoology, Fisheries, Hydrobiology and Apiculture, Faculty of Agronomy Mendel University in Brno Brno Czech Republic.
This study evaluates the response of ground beetle (Coleoptera: Carabidae) assemblage to forest management practices by integrating species composition, body traits, wing morphology and developmental instability. Traditional approaches that rely on averaged identity-based descriptors often overlook phenotypic plasticity and functional trait variability, potentially masking species-specific responses to environmental changes. To address this, we applied a three-layered analytical approach to address this gap, utilising ground beetle occurrence and morphological trait data from Podyjí National Park, Czech Republic.
View Article and Find Full Text PDFAesthetic Plast Surg
January 2025
Medical Research Inc., Wonju, Korea.
The pursuit of aesthetically pleasing shoulder contours, particularly those characterised by a sharp, angular definition, has gained significant traction in Southeast Asia. Traditionally, neuromodulators have been used to achieve these results by inducing muscle atrophy, particularly in the trapezius muscles. However, this approach can carry potential risks, such as compromised muscle function and spinal instability.
View Article and Find Full Text PDFOrthop Surg
January 2025
Department of Orthopedics, The First People's Hospital of Yangquan, Yangquan, China.
Objective: High-grade dysplastic spondylolisthesis (HGDS) is a relatively rare condition mainly involving the L5/S1 segment of the spine and occurring in children and adolescents. Whether surgical fixation should be L5-S1 monosegmental or extended up to L4 remains controversial. This study aimed to compare clinical outcomes and the risk of adjacent segment spondylolisthesis between L5-S1 monosegmental fixation and L4-S1 double-segmental fixation for pediatric HGDS.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!