A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Enhanced removal of chromium(III) for aqueous solution by EDTA modified attapulgite: Adsorption performance and mechanism. | LitMetric

Enhanced removal of chromium(III) for aqueous solution by EDTA modified attapulgite: Adsorption performance and mechanism.

Sci Total Environ

College of Environmental Science and Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China; Shaanxi Key Laboratory of Green Preparation and Functionalization of Inorganic Materials, Xi'an 710021, China. Electronic address:

Published: June 2020

Ethylenediaminetetraacetic acid modified attapulgite (EDTA-ATP) was developed as a novel and promising adsorbent for removal of aqueous Cr(Ш). The structure and surface properties of EDTA-ATP were characterized and the results indicated that EDTA moieties have been successfully anchored on the surface of ATP. Adsorption of Cr(III) on EDTA-ATP and aminopropyl-modified attapulgite (APTES-ATP) monotonously reduced with decreasing pH, and Cr(III) adsorption on EDTA-ATP is substantially higher than APTES-ATP in tested pH range, especially at lower pH. Presence of citric acid and gelatin had no obvious influence on Cr(III) adsorption to EDTA-ATP, but significantly reduced Cr(III) adsorption on APTES-ATP. Coexisting cations resulted in decreased Cr(III) adsorption on EDTA-ATP by competition with Cr(III) for surface-bound EDTA groups of the adsorbent. Adsorption isotherm of Cr(III) on EDTA-ATP followed the Langmuir model and the maximum adsorption capacity of the adsorbent for Cr(III) was 131.37 mg/g at 25 °C and pH 3.0. Cr(Ш) loaded adsorbent could be regenerated easily in HCl solution and the regenerated adsorbent still exhibited high adsorption capacity for Cr(III). XPS analysis confirmed that the enhanced Cr(III) adsorption on EDTA-ATP was ascribed to form the stable complexes between Cr(III) and surface-bound carboxyl and amino groups of the adsorbents.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2020.137391DOI Listing

Publication Analysis

Top Keywords

criii adsorption
20
adsorption edta-atp
16
criii
11
adsorption
10
modified attapulgite
8
edta-atp
8
criii edta-atp
8
criii surface-bound
8
adsorption capacity
8
adsorbent
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!