Photo-crosslinked anhydride-modified polyester and -ethers for pH-sensitive drug release.

Eur J Pharm Biopharm

Polymer Technology, Department of Chemical and Metallurgical Engineering, School of Chemical Engineering, Aalto University, Finland. Electronic address:

Published: May 2020

Photo-crosslinkable polymers have a great potential for the delivery of sensitive drugs. They allow preparation of drug releasing devices by photo-crosslinking, thus avoiding high processing temperatures. In this study, the hydrolysis behavior and drug release of three different photo-crosslinkable poly(ether anhydride)s and one poly(ester anhydride) were investigated. Three-arm poly(ethylene glycol) or polycaprolactone was reacted with succinic anhydride to obtain carboxylated macromers, and further functionalized with methacrylic anhydride to form methacrylated marcromers with anhydride linkages. The synthetized macromers were used to prepare photo-crosslinked matrices with different hydrolytic degradation times for active agent release purposes. The hydrolysis was clearly pH-sensitive: polymer networks degraded slowly in acidic conditions, and degradation rate increased as the pH shifted towards basic conditions. Drug release was studied with two water-soluble model drugs lidocaine (234 mol/g) and vitamin B (1355 g/mol). Vitamin B was released mainly due to polymer network degradation, whereas smaller molecule lidocaine was released also through diffusion and swelling of polymer network. Only a small amount of vitamin B was released in acidic conditions (pH 1.3 and pH 2.1). These polymers have potential in colon targeted drug delivery as the polymer could protect sensitive drugs from acidic conditions in the stomach, and the drug would be released as the conditions change closer to neutral pH in the intestine.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ejpb.2020.02.015DOI Listing

Publication Analysis

Top Keywords

drug release
12
acidic conditions
12
sensitive drugs
8
vitamin released
8
polymer network
8
drug
6
conditions
5
photo-crosslinked anhydride-modified
4
anhydride-modified polyester
4
polyester -ethers
4

Similar Publications

Relationship between CTF1 gene expression and prognosis and tumor immune microenvironment in glioma.

Eur J Med Res

January 2025

Department of Neurosurgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No 17 Panjiayuan Nanli, Chaoyang District, Beijing, 100021, People's Republic of China.

Objective: This study aimed to evaluate CTF1 expression in glioma, its relationship to patient prognosis and the tumor immune microenvironment, and effects on glioma phenotypes to identify a new therapeutic target for treating glioma precisely.

Methods: We initially assessed the expression of CTF1, a member of the IL-6 family, in glioma, using bioinformatics tools and publicly available databases. Furthermore, we examined the correlation between CTF1 expression and tumor prognosis, DNA methylation patterns, m6A-related genes, potential biological functions, the immune microenvironment, and genes associated with immune checkpoints.

View Article and Find Full Text PDF

Background/aims: Gastric cancer (GC) is a significant global health issue with high incidence rates and poor prognoses, ranking among the top prevalent cancers worldwide. Due to undesirable side effects and drug resistance, there is a pressing need for the development of novel therapeutic strategies. Understanding the interconnectedness of the JAK2/STAT3/mTOR/PI3K pathway in tumorigenesis and the role of Astaxanthin (ASX), a red ketocarotenoid member of xanthophylls and potent antioxidant and anti-tumor activity, can be effective for cancer treatments.

View Article and Find Full Text PDF

The aim of this study was to assess the critical quality attributes of parenteral nanoemulsion formulations by measuring several physicochemical parameters and linking them to their in vitro performance, illustrating how simplistic and routinely used approaches are insufficient for understanding a potential nanomedicine. Physicochemical characterization should encompass size and size distribution through at least two orthogonal techniques, such as dynamic light scattering (DLS) and electron microscopy, with added value from analytical ultracentrifugation. In vitro toxicity assessment was performed using three different assays to determine mitochondrial activity (WST-1), membrane integrity (lactate dehydrogenase release (LDH) assay), and cell viability (propidium iodide (PI) staining).

View Article and Find Full Text PDF

Acrylic pressure-sensitive adhesives (PSAs) are widely applied in transdermal drug delivery systems (TDDS). However, the molecular mechanisms underlying the effect of functional groups of PSAs on drug release and transdermal permeation properties remain insufficiently clear. In this study, we investigated the effect of acrylic PSAs' functional groups on the in vitro release and transdermal permeation properties of a model drug guanfacine (GFC).

View Article and Find Full Text PDF

Isoniazid (INH) and rifampicin (RIF) are the two main drugs used for the management of tuberculosis. They are often used as a fixed drug combination, but their delivery is challenged by suboptimal solubility and physical instability. This study explores the potential of active pharmaceutical ingredient-ionic liquids (API-ILs) to improve the physicochemical and pharmaceutical properties of INH and RIF.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!