Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
It is widely accepted that the abnormal self-association of amyloid β-protein (Aβ) is central to the pathogenesis of Alzheimer's disease, the most common form of dementia. Accumulating evidence, both in vivo and in vitro, suggests that the binding of Aβ to gangliosides, especially monosialoganglioside GM1, plays an important role in the aggregation of Aβ. This review summarizes the molecular details of the binding of Aβ to ganglioside-containing membranes and subsequent structural changes, as revealed by liposomal and cellular studies. Furthermore, mechanisms of cytotoxicity by aggregated Aβ are also discussed.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bbamem.2020.183233 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!