ProNA2020 predicts protein-DNA, protein-RNA, and protein-protein binding proteins and residues from sequence.

J Mol Biol

Department of Informatics, I12-Chair of Bioinformatics and Computational Biology, Technical University of Munich (TUM), Boltzmannstrasse 3, 85748, Garching, Munich, Germany; Columbia University, Department of Biochemistry and Molecular Biophysics, 701 West, 168th Street, New York, NY, 10032, USA; Institute of Advanced Study (TUM-IAS), Lichtenbergstr. 2a, 85748, Garching/Munich, Germany; Germany & Institute for Food and Plant Sciences (WZW) Weihenstephan, Alte Akademie 8, 85354 Freising, Germany.

Published: March 2020

The intricate details of how proteins bind to proteins, DNA, and RNA are crucial for the understanding of almost all biological processes. Disease-causing sequence variants often affect binding residues. Here, we described a new, comprehensive system of in silico methods that take only protein sequence as input to predict binding of protein to DNA, RNA, and other proteins. Firstly, we needed to develop several new methods to predict whether or not proteins bind (per-protein prediction). Secondly, we developed independent methods that predict which residues bind (per-residue). Not requiring three-dimensional information, the system can predict the actual binding residue. The system combined homology-based inference with machine learning and motif-based profile-kernel approaches with word-based (ProtVec) solutions to machine learning protein level predictions. This achieved an overall non-exclusive three-state accuracy of 77% ± 1% (±one standard error) corresponding to a 1.8 fold improvement over random (best classification for protein-protein with F1 = 91 ± 0.8%). Standard neural networks for per-residue binding residue predictions appeared best for DNA-binding (Q2 = 81 ± 0.9%) followed by RNA-binding (Q2 = 80 ± 1%) and worst for protein-protein binding (Q2 = 69 ± 0.8%). The new method, dubbed ProNA2020, is available as code through github (https://github.com/Rostlab/ProNA2020.git) and through PredictProtein (www.predictprotein.org).

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jmb.2020.02.026DOI Listing

Publication Analysis

Top Keywords

protein-protein binding
8
proteins bind
8
methods predict
8
binding residue
8
binding
6
proteins
5
prona2020 predicts
4
predicts protein-dna
4
protein-dna protein-rna
4
protein-rna protein-protein
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!