Biotinylated nucleic acid hybridization probes for potato virus detection.

Arch Virol

Instituto de Biologiá Molecular CICV-INTA Castelar, Buenos Aires, Argentina.

Published: February 1989

cDNA libraries, representative of potato viruses X (PVXc strain) and Y (PVY degrees strain) genomes were obtained. A PVX cDNA cloned fragment was sequenced and biotinylated to be used as hybridization probe for the detection of purified virus or nucleic acid extracts of infected plants. Dot hybridization assay was sensitive to detect 4 ng of viral particles, corresponding to about 200 pg of viral RNA. The level of detection in infected plant extracts was as effective as that obtained with the ELISA. The presence of biotinylated PVY cDNA in the hybridization mixture did not affect sensitivity of the PVX detection assay, suggesting that a single diagnostic assay for several potato viruses and virus-related pathogens could be developed.

Download full-text PDF

Source
http://dx.doi.org/10.1007/BF01311095DOI Listing

Publication Analysis

Top Keywords

nucleic acid
8
potato viruses
8
biotinylated nucleic
4
hybridization
4
acid hybridization
4
hybridization probes
4
probes potato
4
potato virus
4
detection
4
virus detection
4

Similar Publications

Immunofluorescence is highly dependent on antibody-antigen interactions for accurate visualization of proteins and other biomolecules within cells. However, obtaining antibodies with high specificity and affinity for their target proteins can be challenging, especially for targets that are complex or naturally present at low levels. Therefore, we developed AptaFluorescence, a protocol that utilizes fluorescently labeled aptamers for in vitro biomolecule visualization.

View Article and Find Full Text PDF

Millions of tons of polyethylene terephthalate (PET) are produced each year, however only ~30% of PET is currently recycled in the United States. Improvement of PET recycling and upcycling practices is an area of ongoing research. One method for PET upcycling is chemical depolymerization (through hydrolysis or aminolysis) into aromatic monomers and subsequent biodegradation.

View Article and Find Full Text PDF

Background: The SARS-CoV-2 virus's frequent mutations have made disease control with vaccines and antiviral drugs difficult; as a result, there is a need for more effective coronavirus drugs. Therefore, detecting the expression of various diagnostic biomarkers, including ncRNA in SARS-CoV2, implies new therapeutic strategies for the disease.

Aim: Our study aimed to measure NEAT-1, miR-374b-5p, and IL6 in the serum of COVID-19 patients, demonstrating the correlation between target genes to explore the possible relationship between them.

View Article and Find Full Text PDF

Metastasis in patients with oral squamous cell carcinoma has been associated with a poor prognosis. However, sensitive and reliable tests for monitoring their occurrence are unavailable, with the exception of PET-CT. Circulating tumor cells and cell-free DNA have emerged as promising biomarkers for determining treatment efficacy and as prognostic predictors in solid tumors such as breast cancer and colorectal cancer.

View Article and Find Full Text PDF

Importance: Serial circulating tumor DNA (ctDNA) has emerged as a routine surveillance strategy for patients with resected colorectal cancer, but how serial ctDNA monitoring is associated with potential curative outcomes has not been formally assessed.

Objective: To examine whether there is a benefit of adding serial ctDNA assays to standard-of-care imaging surveillance for potential curative outcomes in patients with resected colorectal cancer.

Design, Setting, And Participants: In this single-center (City of Hope Comprehensive Cancer Center, Duarte, California), retrospective, case cohort study, patients with stage II to IV colorectal cancer underwent curative resection and were monitored with serial ctDNA assay and National Cancer Center Network (NCCN)-guided imaging surveillance from September 20, 2019, to April 3, 2024.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!