Ca-permeable AMPA receptors (AMPAR) which crucially modify maturational programs of the developing brain are involved in seizure-induced glutamate excitotoxicity and apoptosis. Regulatory effects on AMPAR subunit composition and RNA-editing in the developing brain and their significance as therapeutic targets are not well understood. Here, we analyzed acute effects of recurrent pilocarpine-induced neonatal seizures on age- and region-specific expression of AMPAR subunits and adenosine deaminases (ADAR) in the developing mouse brain (P10). After recurrent seizure activity and regeneration periods of 6-72 h cerebral mRNA levels of GluR (glutamate receptor subunit) 1, GluR2, GluR3, and GluR4 were unaffected compared to controls. However, ratio of GluR2 and GluR4 to pooled GluR1-4 mRNA concentration significantly decreased in seizure-exposed brains in comparison to controls. After a regeneration period of 24-72 h ADAR1 and ADAR2 mRNA expression was significantly lower in seizure-exposed brains than in those of controls. This was confirmed at the protein level in the hippocampal CA3 region. We observed a regionally increased apoptosis (TUNEL+ and CC3+ cells) in the hippocampus, parietal cortex and subventricular zone of seizure-exposed brains in comparison to controls. Together, present in vivo data demonstrate the maturational age-specific, functional role of RNA-edited GluR2 in seizure-induced excitotoxicity in the developing mouse brain. In response to recurrent seizure activity, we observed reduced expression of GluR2 and the GluR2 mRNA-editing enzymes ADAR1 and ADAR2 accompanied by increased apoptosis in a region-specific manner. Thus, AMPA receptor subtype-specific mRNA editing is assessed as a promising target of novel neuroprotective treatment strategies in consideration of age-related developmental mechanisms.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.brainres.2020.146760DOI Listing

Publication Analysis

Top Keywords

developing mouse
12
mouse brain
12
seizure-exposed brains
12
rna-edited glur2
8
developing brain
8
recurrent seizure
8
seizure activity
8
brains comparison
8
comparison controls
8
adar1 adar2
8

Similar Publications

Aim: Despite dysfunctional vasoactive intestinal polypeptide-positive interneurons (VIP-INs) being linked to the emergence of neurodevelopmental disorders, the temporal profile of VIP-IN functional maturation and cortical network integration remains unclear.

Methods: Postnatal VIP-IN development was traced with patch clamp experiments in the somatosensory cortex of Vip-IRES-cre x tdTomato mice. Age groups were chosen during barrel field formation, before and after activation of main sensory inputs, and in adult animals (postnatal days (P) P3-4, P8-10, P14-16, and P30-36).

View Article and Find Full Text PDF

Colorectal cancer (CRC) is among the most common cancer types for both sexes. Tripartite motif 36 (TRIM36) has been reported to be aberrantly expressed in several cancer types, suggesting its involvement in cancer progression. However, the role of TRIM36 in the colorectal carcinogenesis remain unknown.

View Article and Find Full Text PDF

Prostate cancer (PCa) is the second leading cause of cancer-related deaths among American men. The development of metastatic castration resistant PCa (mCRPC) is the current clinical challenge. Antiandrogens such as Enzalutamide (ENZ) are commonly used for CRPC treatment.

View Article and Find Full Text PDF

Androgen receptor (AR) signaling is a target in prostate cancer therapy and can be treated with non-steroidal anti-androgens (NSAA) including enzalutamide, and apalutamide for patients with advanced disease. Metastatic castration-resistant prostate cancer (mCPRC) develop resistance becomes refractory to therapy limiting patient overall survival. Darolutamide is a novel next-generation androgen receptor-signaling inhibitor that is FDA approved for non-metastatic castration resistant prostate cancer (nmCRPC).

View Article and Find Full Text PDF

Genetic medicines, including CRISPR/Cas technologies, extend tremendous promise for addressing unmet medical need in inherited retinal disorders and other indications; however, there remain challenges for the development of therapeutics. Herein, we evaluate genome editing by engineered Cas9 ribonucleoproteins (eRNP) in vivo via subretinal administration using mouse and pig animal models. Subretinal administration of adenine base editor and double strand break-inducing Cas9 nuclease eRNPs mediate genome editing in both species.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!