The jasmonate signaling pathway regulates development, growth, and defense responses in plants. Studies in the model eudicot, Arabidopsis thaliana, have identified the bioactive hormone (jasmonoyl-isoleucine [JA-Ile]) and its Coronatine Insensitive 1 (COI1)/Jasmonate-ZIM Domain (JAZ) co-receptor. In bryophytes, a conserved signaling pathway regulates similar responses but uses a different ligand, the JA-Ile precursor dinor-12-oxo-10,15(Z)-phytodienoic acid (dn-OPDA), to activate a conserved co-receptor. Jasmonate responses independent of JA-Ile and COI1, thought to be mediated by the cyclopentenone OPDA, have also been suggested, but experimental limitations in Arabidopsis have hindered attempts to uncouple OPDA and JA-Ile biosynthesis. Thus, a clear understanding of this pathway remains elusive. Here, we address the role of cyclopentenones in COI1-independent responses using the bryophyte Marchantia polymorpha, which is unable to synthesize JA-Ile but does accumulate OPDA and dn-OPDA. We demonstrate that OPDA and dn-OPDA activate a COI1-independent pathway that regulates plant thermotolerance genes, and consequently, treatment with these oxylipins protects plants against heat stress. Furthermore, we identify that these molecules signal through their electrophilic properties. By performing comparative analyses between M. polymorpha and two evolutionary distant species, A. thaliana and the charophyte alga Klebsormidium nitens, we demonstrate that this pathway is conserved in streptophyte plants and pre-dates the evolutionary appearance of the COI1-dependent jasmonate pathway, which later co-opted the pre-existing dn-OPDA as its ligand. Taken together, our data indicate that cyclopentenone-regulated COI1-independent signaling is an ancient conserved pathway, whose ancestral role was to protect plants against heat stress. This pathway was likely crucial for plants' successful land colonization and will be critical for adaption to current climate warming.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.cub.2020.01.023 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!