Experimental Demonstration of a Dusty Plasma Ratchet Rectification and Its Reversal.

Phys Rev Lett

Center for Soft Condensed Matter Physics and Interdisciplinary Research, School of Physical Science and Technology, Soochow University, Suzhou 215006, China.

Published: February 2020

The naturally persistent flow of hundreds of dust particles is experimentally achieved in a dusty plasma system with the asymmetric sawteeth of gears on the electrode. It is also demonstrated that the direction of the dust particle flow can be controlled by changing the plasma conditions of the gas pressure or the plasma power. Numerical simulations of dust particles with the ion drag inside the asymmetric sawteeth verify the experimental observations of the flow rectification of dust particles. Both experiments and simulations suggest that the asymmetric potential and the collective effect are the two keys in this dusty plasma ratchet. With the nonequilibrium ion drag, the dust flow along the asymmetric orientation of this electric potential of the ratchet can be reversed by changing the balance height of dust particles using different plasma conditions.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevLett.124.075001DOI Listing

Publication Analysis

Top Keywords

dust particles
16
dusty plasma
12
plasma ratchet
8
asymmetric sawteeth
8
plasma conditions
8
ion drag
8
plasma
6
dust
6
experimental demonstration
4
demonstration dusty
4

Similar Publications

Continuous Characterization of Insoluble Particles in Ice Cores Using the Single-Particle Extinction and Scattering Method.

Environ Sci Technol

December 2024

Climate and Environmental Physics, Physics Institute, and Oeschger Centre for Climate Change Research, University of Bern, Sidlerstrasse 5, Bern 3012, Switzerland.

This study presents the integration of the single-particle extinction and scattering (SPES) method in a continuous flow analysis (CFA) setup. Continuous measurements with the instrument allow for the characterization of water-insoluble particles in ice cores at high resolution with a minimized risk of contamination. The SPES method can be used to investigate particles smaller than 1 μm, which previously could not be detected by instruments typically used in CFA.

View Article and Find Full Text PDF

The development of new urban areas necessitates building on increasingly scarce land, often overlaid on weak soil layers. Furthermore, climate change has exacerbated the extent of global arid lands, making it imperative to find sustainable soil stabilization and erosion mitigation methods. Thus, scientists have strived to find a plant-based biopolymer that favors several agricultural waste sources and provides high strength and durability for sustainable soil stabilization.

View Article and Find Full Text PDF

Developing novel materials is an essential requirement in the engineering field. This study investigates the effects of incorporating wood dust particles on the mechanical and erosive wear properties of Luffa acutangula fiber (LAF)-reinforced phenol-formaldehyde composites, fabricated using the hand layup method with a constant 20% fiber content and varying wood dust particle contents of 0%, 10%, 20%, and 30%. Using the Taguchi method, the study identifies the optimal combination for minimizing erosive wear - 20% wood dust content, 45 m/s impact velocity, 60° impingement angle, 600 μm erodent size, and 60 mm standoff distance-achieving a minimum erosion rate of 189.

View Article and Find Full Text PDF

Key drivers and source mechanisms of oxidative potential in fine particles from an industrial city of Northern China Plain.

Sci Total Environ

December 2024

State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.

The oxidative potential (OP) of particulate matter (PM) is crucial for understanding its ability to generate reactive oxygen species. However, the major chemical drivers influencing OP still need to be better understood. This study investigated the seasonal variations of OP and identified key drivers and source mechanisms in the industrial city of Zibo, located in North China Plain.

View Article and Find Full Text PDF

This work introduces CAECENET, a new system capable of automatically retrieving columnar and vertically-resolved aerosol properties running the GRASP (Generalized Retrieval of Atmosphere and Surface Properties) algorithm using sun-sky photometer (aerosol optical depth, AOD; and sky radiance measurements) and ceilometer (range corrected signal; RCS) data as input. This method, so called GRASPpac, is implemented in CAECENET, which assimilates sun-sky photometers data from CÆLIS database and ceilometer data from ICENET database (Iberian Ceilometer Network). CAECENET allows for continuous and near-real-time monitoring of both vertical and columnar aerosol properties.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!