The zone-center E_{2g} modes play a crucial role in MgB_{2}, controlling the scattering mechanisms in the normal state as well the superconducting pairing. Here, we demonstrate via first-principles quantum-field theory calculations that, due to the anisotropic electron-phonon interaction, a hot-phonon regime where the E_{2g} phonons can achieve significantly larger effective populations than other modes, is triggered in MgB_{2} by the interaction with an ultrashort laser pulse. Spectral signatures of this scenario in ultrafast pump-probe Raman spectroscopy are discussed in detail, revealing also a fundamental role of nonadiabatic processes in the optical features of the E_{2g} mode.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevLett.124.077001 | DOI Listing |
Nano Lett
January 2025
Department of Physics and Astronomy, University of Wyoming, Laramie, Wyoming 82071, United States.
Anisotropic materials with low symmetries hold significant promise for next-generation electronic and quantum devices. 2M-WS, which is a candidate for topological superconductivity, has garnered considerable interest. However, a comprehensive understanding of how its anisotropic features contribute to unconventional superconductivity, along with a simple, reliable method to identify its crystal orientation, remains elusive.
View Article and Find Full Text PDFR Soc Open Sci
December 2024
Graduate School of Science and Engineering, Yamagata University, Yamagata, Japan.
The physical and superconducting characteristics of SrPdP and SrPdAs compounds with applied pressure were calculated using density functional theory. The pressure effect on the structural properties of these compounds was investigated. The results show that both lattice constants and volume decrease almost linearly with increasing pressure.
View Article and Find Full Text PDFLangmuir
November 2024
School of Physics, Zhejiang University of Science and Technology, Hangzhou 310023, China.
The unique anisotropic electron-photon and electron-phonon interactions of black phosphorus (BP) set it apart from other isotropic 2D materials. These anisotropic properties can be adjusted by varying the stacking thickness and sequence as well as by applying external pressure and strain. In contrast to multilayer or bulk BP, the effects of pressure on bilayer BP are still not fully elucidated.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
October 2024
State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China.
Two-dimensional (2D) <100>-oriented perovskites exhibit superior optoelectronic properties, offering significant potential in photovoltaic, light-emitting, and photodetection applications. Nevertheless, their enlarged interlayer spacing restricts longitudinal carrier transport, thereby limiting its potential applications. While <110>-oriented 2D perovskites provide a prospective solution with their compact interlayer spacing, their inherent structure, characterized by octahedra tilting, indirectly hinders carrier transport due to the generation of self-trapped excitons (STEs) caused by strong electron-phonon coupling.
View Article and Find Full Text PDFPhys Rev Lett
September 2024
Department of Physics, University of California at Berkeley, Berkeley, California 94720, USA.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!