Local drug delivery systems have recently been developed for multiple diseases that have the requirements of site-specific actions, prolonged delivery periods, and decreased drug dosage to reduce undesirable side effects. The challenge for such systems is to achieve directional and precise delivery in inaccessible narrow lesions, such as periodontal pockets or root canals in deeper portions of the dentinal tubules. The primary strategy to tackle this challenge is fabricating a smart tracking delivery system. Here, drug-loaded biodegradable micromotors showing self-propelled directional movement along a hydrogen peroxide concentration gradient produced by phorbol esters-stimulated macrophages are reported. The drug-loaded poly(lactic-co-glycolic acid) micromotors with asymmetric coverage of enzyme (patch-like enzyme distribution) are prepared by electrospraying and postfunctionalized with catalase via 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide coupling. Doxycycline, a common drug for the treatment of periodontal disease, is selected as a model drug, and the release study by high-performance liquid chromatography is shown that both the postfunctionalization step and the presence of hydrogen peroxide have no negative influence on drug release profiles. The movement behavior in the presence of hydrogen peroxide is confirmed by nanoparticle tracking analysis. An in vitro model is designed and confirmed the response efficiency and directional control of the micromotors toward phorbol esters-stimulated macrophages.

Download full-text PDF

Source
http://dx.doi.org/10.1002/adhm.201901710DOI Listing

Publication Analysis

Top Keywords

hydrogen peroxide
12
phorbol esters-stimulated
8
esters-stimulated macrophages
8
drug release
8
presence hydrogen
8
drug
5
self-propelled plga
4
plga micromotor
4
micromotor chemotactic
4
chemotactic response
4

Similar Publications

An innovative colorimetric sensing strategy was developed for the detection of glucose by the integration of glucose aptamer, glucose oxidase (GOx), and horseradish peroxidase (HRP), termed aptamer proximal enzyme cascade reactions (APECR). In the presence of glucose, aptamer binding enables GOx to catalyze glucose oxidation into HO efficiently. Subsequently, the adjacent HRP catalyzes the oxidation of the peroxidase substrate, 2,2'-biazobis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS), utilizing the generated HO, resulting in a distinct color change.

View Article and Find Full Text PDF

Aim: This study evaluated the color stability and surface roughness of two universal-shade compared to two nanohybrid composites after staining and external bleaching with 40% hydrogen peroxide.

Methods: Two universal shade resin-based composites and two nanohybrid composites were tested. Twenty disc-shaped specimens from each material were fabricated and divided into two subgroups: one group was stained and bleached (staining group) and the other received bleaching treatment only (control group).

View Article and Find Full Text PDF

Imatinib mesylate is a targeted anti-cancer drug with skin pigmentation as a side effect. The action mechanism of imatinib mesylate on melanogenesis remains unclear. The purpose of this study was to elucidate the mechanism of imatinib mesylate on melanogenesis associated with the microphthalmia-associated transcription factor (MITF) signaling pathway in murine melanoma cells.

View Article and Find Full Text PDF

The electrocatalytic conversion of oxygen to hydrogen peroxide offers a promising pathway for sustainable energy production. However, the development of catalysts that are highly active, stable, and cost-effective for hydrogen peroxide synthesis remains a significant challenge. In this study, a novel polyacid-based metal-organic coordination compound (Cu-PW) was synthesized using a hydrothermal approach.

View Article and Find Full Text PDF

Electrochemical Detection of Hydrogen Peroxide at High Concentrations Using Hastelloy G35 Electrode.

Langmuir

January 2025

State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, Jilin 130022, P R China.

The detection of hydrogen peroxide (HO) at elevated concentrations while eliminating oxygen interference presents a significant challenge. Nickel-based stainless steel, such as Hastelloy G35, has shown excellent corrosion resistance. However, it has never been used in electroanalysis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!