AI Article Synopsis

  • Many protein structures show internal rotational symmetry, likely from gene duplication and fusion events involving a basic polypeptide motif.
  • The β-trefoil protein fold is a symmetric structure characterized by a domain-swapped arrangement, crucial for its stability and cooperative folding, though the effects of circular permutation on folding are not well understood.
  • Research indicates that only the native N-terminal motif of the β-trefoil is capable of forming a stable trimer, while circular permutations result in unstable monomers, revealing insights into the folding and structural characteristics of the trefoil-fold motif.

Article Abstract

Many protein architectures exhibit evidence of internal rotational symmetry postulated to be the result of gene duplication/fusion events involving a primordial polypeptide motif. A common feature of such structures is a domain-swapped arrangement at the interface of the N- and C-termini motifs and postulated to provide cooperative interactions that promote folding and stability. De novo designed symmetric protein architectures have demonstrated an ability to accommodate circular permutation of the N- and C-termini in the overall architecture; however, the folding requirement of the primordial motif is poorly understood, and tolerance to circular permutation is essentially unknown. The β-trefoil protein fold is a threefold-symmetric architecture where the repeating ~42-mer "trefoil-fold" motif assembles via a domain-swapped arrangement. The trefoil-fold structure in isolation exposes considerable hydrophobic area that is otherwise buried in the intact β-trefoil trimeric assembly. The trefoil-fold sequence is not predicted to adopt the trefoil-fold architecture in ab initio folding studies; rather, the predicted fold is closely related to a compact "blade" motif from the β-propeller architecture. Expression of a trefoil-fold sequence and circular permutants shows that only the wild-type N-terminal motif definition yields an intact β-trefoil trimeric assembly, while permutants yield monomers. The results elucidate the folding requirements of the primordial trefoil-fold motif, and also suggest that this motif may sample a compact conformation that limits hydrophobic residue exposure, contains key trefoil-fold structural features, but is more structurally homologous to a β-propeller blade motif.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7184783PMC
http://dx.doi.org/10.1002/pro.3850DOI Listing

Publication Analysis

Top Keywords

motif
10
initio folding
8
trefoil-fold motif
8
β-propeller blade
8
blade motif
8
protein architectures
8
domain-swapped arrangement
8
circular permutation
8
intact β-trefoil
8
β-trefoil trimeric
8

Similar Publications

Antigen receptor ITAMs provide tonic signaling by acting as guanine nucleotide exchange factors to directly activate R-RAS2.

Sci Signal

January 2025

Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, 28049 Madrid, Spain.

The small GTPase R-RAS2 regulates homeostatic proliferation and survival of T and B lymphocytes and, when present in high amounts, drives the development of B cell chronic lymphocytic leukemia. In normal and leukemic lymphocytes, R-RAS2 constitutively binds to antigen receptors through their immunoreceptor tyrosine-based activation motifs (ITAMs) and promotes tonic activation of the phosphatidylinositol 3-kinase (PI3K) signaling pathway. Here, we examined the molecular mechanisms underlying this direct interaction and its consequences for R-RAS2 activity.

View Article and Find Full Text PDF

Severe acute respiratory syndrome coronavirus-1 (SARS-CoV-1) and -2 (SARS-CoV-2) are beta-coronaviruses (β-CoVs) that have caused significant morbidity and mortality worldwide. Therefore, a better understanding of host responses to β-CoVs would provide insights into the pathogenesis of these viruses to identify potential targets for medical countermeasures. In this study, our objective is to use a systems biology approach to explore the magnitude and scope of innate immune responses triggered by SARS-CoV-1 and -2 infection over time in pathologically relevant human lung epithelial cells (Calu-3/2B4 cells).

View Article and Find Full Text PDF

Organismal complexity strongly correlates with the number of protein families and domains.

Proc Natl Acad Sci U S A

February 2025

Duncan and Nancy MacMillan Cancer Immunology and Metabolism Center of Excellence, Rutgers Cancer Institute of New Jersey, New Brunswick, NJ 08901.

In the pregenomic era, scientists were puzzled by the observation that haploid genome size (the C-value) did not correlate well with organismal complexity. This phenomenon, called the "C-value paradox," is mostly explained by the fact that protein-coding genes occupy only a small fraction of eukaryotic genomes. When the first genome sequences became available, scientists were even more surprised by the fact that the number of genes (G-value) was also a poor predictor of complexity, which gave rise to the "G-value paradox.

View Article and Find Full Text PDF

An Automated Approach for Domain-Specific Knowledge Graph Generation─Graph Measures and Characterization.

J Chem Inf Model

January 2025

Center for Engineering Concepts Development, Department of Mechanical Engineering, University of Maryland, College Park, Maryland 20742, United States.

In 2020, nearly 3 million scientific and engineering papers were published worldwide (White, K. Publications Output: U.S.

View Article and Find Full Text PDF

Triglyceride (TG) metabolism is a complex and highly coordinated biological process regulated by a series of genes, and its dysregulation can lead to the occurrence of disorders in lipid metabolism. However, the transcriptional regulatory mechanisms of crucial genes in TG metabolism mediated by enhancer-promoter interactions remain elusive. Here, we identified candidate enhancers regulating the Agpat2, Dgat1, Dgat2, Pnpla2, and Lipe genes in 3T3-L1 adipocytes by integrating epigenomic data (H3K27ac, H3K4me1, and DHS-seq) with chromatin three-dimensional interaction data.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!