AI Article Synopsis

  • Many protein structures show internal rotational symmetry, likely from gene duplication and fusion events involving a basic polypeptide motif.
  • The β-trefoil protein fold is a symmetric structure characterized by a domain-swapped arrangement, crucial for its stability and cooperative folding, though the effects of circular permutation on folding are not well understood.
  • Research indicates that only the native N-terminal motif of the β-trefoil is capable of forming a stable trimer, while circular permutations result in unstable monomers, revealing insights into the folding and structural characteristics of the trefoil-fold motif.

Article Abstract

Many protein architectures exhibit evidence of internal rotational symmetry postulated to be the result of gene duplication/fusion events involving a primordial polypeptide motif. A common feature of such structures is a domain-swapped arrangement at the interface of the N- and C-termini motifs and postulated to provide cooperative interactions that promote folding and stability. De novo designed symmetric protein architectures have demonstrated an ability to accommodate circular permutation of the N- and C-termini in the overall architecture; however, the folding requirement of the primordial motif is poorly understood, and tolerance to circular permutation is essentially unknown. The β-trefoil protein fold is a threefold-symmetric architecture where the repeating ~42-mer "trefoil-fold" motif assembles via a domain-swapped arrangement. The trefoil-fold structure in isolation exposes considerable hydrophobic area that is otherwise buried in the intact β-trefoil trimeric assembly. The trefoil-fold sequence is not predicted to adopt the trefoil-fold architecture in ab initio folding studies; rather, the predicted fold is closely related to a compact "blade" motif from the β-propeller architecture. Expression of a trefoil-fold sequence and circular permutants shows that only the wild-type N-terminal motif definition yields an intact β-trefoil trimeric assembly, while permutants yield monomers. The results elucidate the folding requirements of the primordial trefoil-fold motif, and also suggest that this motif may sample a compact conformation that limits hydrophobic residue exposure, contains key trefoil-fold structural features, but is more structurally homologous to a β-propeller blade motif.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7184783PMC
http://dx.doi.org/10.1002/pro.3850DOI Listing

Publication Analysis

Top Keywords

motif
10
initio folding
8
trefoil-fold motif
8
β-propeller blade
8
blade motif
8
protein architectures
8
domain-swapped arrangement
8
circular permutation
8
intact β-trefoil
8
β-trefoil trimeric
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!