Eukaryotes are typically depicted as descendants of archaea, but their genomes are evolutionary chimeras with genes stemming from archaea and bacteria. Which prokaryotic heritage predominates? Here, we have clustered 19,050,992 protein sequences from 5,443 bacteria and 212 archaea with 3,420,731 protein sequences from 150 eukaryotes spanning six eukaryotic supergroups. By downsampling, we obtain estimates for the bacterial and archaeal proportions. Eukaryotic genomes possess a bacterial majority of genes. On average, the majority of bacterial genes is 56% overall, 53% in eukaryotes that never possessed plastids, and 61% in photosynthetic eukaryotic lineages, where the cyanobacterial ancestor of plastids contributed additional genes to the eukaryotic lineage. Intracellular parasites, which undergo reductive evolution in adaptation to the nutrient rich environment of the cells that they infect, relinquish bacterial genes for metabolic processes. Such adaptive gene loss is most pronounced in the human parasite Encephalitozoon intestinalis with 86% archaeal and 14% bacterial derived genes. The most bacterial eukaryote genome sampled is rice, with 67% bacterial and 33% archaeal genes. The functional dichotomy, initially described for yeast, of archaeal genes being involved in genetic information processing and bacterial genes being involved in metabolic processes is conserved across all eukaryotic supergroups.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7151554 | PMC |
http://dx.doi.org/10.1093/gbe/evaa047 | DOI Listing |
Vet Res
January 2025
National and Regional Joint Engineering Laboratory for Medicament of Zoonoses Prevention and Control, Key Laboratory of Zoonoses, Ministry of Agriculture, Key Laboratory of Zoonoses Prevention and Control of Guangdong Province, Key Laboratory of Animal Vaccine Development, Ministry of Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China.
S. Typhimurium is a significant zoonotic pathogen, and its survival and transmission rely on stress resistance and virulence factors. Therefore, identifying key regulatory elements is crucial for preventing and controlling S.
View Article and Find Full Text PDFWorld J Microbiol Biotechnol
January 2025
Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology (IHBT), Palampur, HP, 176061, India.
Understanding the change in plant-associated microbial diversity and secondary metabolite biosynthesis in medicinal plants due to their cultivation in non-natural habitat (NNH) is important to maintain their therapeutic importance. Here, the bacterial endomicrobiome of Podophyllum hexandrum plants of natural habitat (NH; Kardang and Triloknath locations) and NNH (Palampur location) was identified and its association with the biosynthesis of podophyllotoxin (PTOX) was revealed. Rhizomes (source of PTOX) of plants of NH had highest endophytic bacterial diversity compared to NNH-plants.
View Article and Find Full Text PDFMol Microbiol
January 2025
Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
Bacterial pathogens possess a remarkable capacity to sense and adapt to ever-changing environments. For example, Vibrio cholerae, the causative agent of the severe diarrheal disease cholera, thrives in aquatic ecosystems and human hosts through dynamic survival strategies. In this study, we investigated the role of three photolyases, enzymes that repair DNA damage caused by exposure to UV radiation and blue light, in the environmental survival of V.
View Article and Find Full Text PDFMicrob Pathog
January 2025
Department of Molecular Biology & Bioinformatics, Tripura University (A Central University), Suryamaninagar-799022, Tripura, India. Electronic address:
Biofilm formation, extracellular substance synthesis, and virulence factor production all have a major impact on drug tolerance and infection propagation caused by Staphylococcus aureus. Flavonoid compounds have been explored as potential solutions to enhance antibiotic efficacy against the biofilm formation of pathogenic microbes. Quercetin (QER) has previously demonstrated antibacterial and antibiofilm properties.
View Article and Find Full Text PDFEnviron Int
January 2025
Ineos Oxford Institute for Antimicrobial Research, Department of Biology, University of Oxford, Oxford OX1 3RE, United Kingdom. Electronic address:
Antimicrobial resistance (AMR) and environmental degradation are existential global public health threats. Linking microplastics (MPs) and AMR is particularly concerning as MPs pollution would have significant ramifications on controlling of AMR; however, the effects of MPs on the spread and genetic mechanisms of AMR bacteria remain unclear. Herein, we performed Simonsen end-point conjugation to investigate the impact of four commonly used MPs on transfer of clinically relevant plasmids.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!