A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

The interaction of oxymyoglobin with hydrogen peroxide: a kinetic anomaly at large excesses of hydrogen peroxide. | LitMetric

The interaction of oxymyoglobin with hydrogen peroxide: a kinetic anomaly at large excesses of hydrogen peroxide.

Arch Biochem Biophys

Department of Chemistry and Food Science, Framingham State College, Massachusetts 01701.

Published: December 1988

The reaction of oxymyoglobin (MbO2) with H2O2 has been examined at pH 7.2 and 20(+/- 2) degrees C for reactant ratios of [H2O2]:[MbO2] greater than approximately 15:1. Under the conditions of large excesses of H2O2, the reaction is characterized by an increase in the rate of loss of MbO2 as [H2O2] is increased, for which a value of k(MbO2 + H2O2) approximately 3 M-1 s-1 is obtained. This kinetic behavior contrasts the saturation kinetics observed previously at lower values of [H2O2]. The change in kinetics at increasing excesses of H2O2 is accompanied by a progressive tendency toward the direct formation of ferrimyoglobin at the expense of ferrylmyoglobin formation. A mechanism is proposed in which an initially formed intermediate produces the ferryl derivative in competition with the formation of ferrimyoglobin through the interaction of further H2O2. Overall, the H2O2 is catalytically decomposed by the MbO2. This mechanism is integrated with that determined previously at low excesses of H2O2 into a complex general scheme that applies over the entire studied range of [H2O2]:[MbO2]. No evidence is obtained for the conversion of ferrylmyoglobin to oxymyoglobin by the large excesses of H2O2, regardless of whether the ferryl derivative is the product of the reaction of H2O2 with the oxy or ferri derivative of myoglobin.

Download full-text PDF

Source
http://dx.doi.org/10.1016/0003-9861(88)90069-0DOI Listing

Publication Analysis

Top Keywords

excesses h2o2
16
large excesses
12
h2o2
9
hydrogen peroxide
8
formation ferrimyoglobin
8
ferryl derivative
8
excesses
5
interaction oxymyoglobin
4
oxymyoglobin hydrogen
4
peroxide kinetic
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!