The 2-[2-(2-phenylethenyl)cyclopent-3-en-1-yl]-1,3-benzothiazoles were synthesized from the reactions of 7-benzylidenebicyclo[3.2.0]hept-2-en-6-ones with 2-aminobenzenethiol. The antiproliferative activities of 2-[2-(2-phenylethenyl)cyclopent-3-en-1-yl]-1,3-benzothiazoles were determined against C6 (rat brain tumor) and HeLa (human cervical carcinoma cells) cell lines using BrdU cell proliferation ELISA assay. Cisplatin and 5-fluorouracil (5-FU) were used as standards. The most active compound was 2-{(1S,2S)-2-[(E)-2-(4-methylphenyl)ethenyl]cyclopent-3-en-1-yl}-1,3-benzothiazole against C6 cell lines with IC =5.89 μm value (cisplatin, IC =14.46 μm and 5-FU, IC =76.74 μm). Furthermore, the most active compound was 2-{(1S,2S)-2-[(E)-2-(2-methoxyphenyl)ethenyl]cyclopent-3-en-1-yl}-1,3-benzothiazole against HeLa cell lines with IC =3.98 μm (cisplatin, IC =37.95 μm and 5-FU, IC =46.32 μm). Additionally, computational studies of related molecules were performed by using B3LYP/6-31G+(d,p) level in the gas phase. Experimental IR and NMR data were compared with the calculated results and were found to be compatible with each other. Molecular electrostatic potential (MEP) maps of the most active 2-{(1S,2S)-2-[(E)-2-(2-methoxyphenyl)ethenyl]cyclopent-3-en-1-yl}-1,3-benzothiazole against HeLa and the most active 2-{(1S,2S)-2-[(E)-2-(4-methylphenyl)ethenyl]cyclopent-3-en-1-yl}-1,3-benzothiazole against C6 were investigated, aiming to determine the region that the molecule is biologically active. Biological activities of mentioned molecules were investigated with molecular docking analyses. The appropriate target protein (PDB codes: 1 M17 for the HeLa cells and 1JQH for the C6 cells) was used for 2-{(1S,2S)-2-[(E)-2-(2-methoxyphenyl)ethenyl]cyclopent-3-en-1-yl}-1,3-benzothiazole and 2-{(1S,2S)-2-[(E)-2-(4-methylphenyl)ethenyl]cyclopent-3-en-1-yl}-1,3-benzothiazole molecules exhibiting the highest biological activity against HeLa and C6 cells in the docking studies. As a result, it was determined that these molecules are the best candidates for the anticancer drug.

Download full-text PDF

Source
http://dx.doi.org/10.1002/cbdv.201900675DOI Listing

Publication Analysis

Top Keywords

molecular docking
8
cell lines
8
active compound
8
2-{1s2s-2-[e-2-2-methoxyphenylethenyl]cyclopent-3-en-1-yl}-13-benzothiazole hela
8
hela cells
8
hela
5
active
5
antiproliferative evaluation
4
evaluation 2-[2-2-phenylethenyl-cyclopent-3-en-1-yl]-13-benzothiazoles
4
2-[2-2-phenylethenyl-cyclopent-3-en-1-yl]-13-benzothiazoles dft
4

Similar Publications

Dietary Methionine Restriction Alleviates Cognitive Impairment in Alzheimer's Disease Mice via Sex-Dependent Modulation on Gut Microbiota and Tryptophan Metabolism: A Multiomics Analysis.

J Agric Food Chem

January 2025

Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China.

Plant-based foods with low methionine contents have gained increasing interest for their potential health benefits, including neuroprotective effects. Methionine restriction (MR) linked to a plant-based diet has been shown to mitigate neurodegenerative diseases such as Alzheimer's disease (AD) through mechanisms that involve the gut microbiota. In this study, a 16-week MR diet (0.

View Article and Find Full Text PDF

Unlabelled: Porcine reproductive and respiratory syndrome (PRRS) remains a major threat to animal health and causes substantial economic losses worldwide. The nonstructural protein 11 (NSP11) of the causative agent, PRRS virus (PRRSV), contains a highly conserved nidoviral uridylate-specific endoribonuclease (NendoU) domain essential for viral replication and immune evasion. Targeting NSP11 offers a novel approach to antiviral intervention.

View Article and Find Full Text PDF

Rice blast disease, instigated by (), significantly impedes global rice production. Targeting the signaling protein, cAMP-Protein Kinase A (CPKA), which facilitates appressorium development and host penetration, this study explores the potential inhibitory effects of natural compounds. Virtual screening, molecular docking and text mining approaches were used to find the nimonol and curcumin that inhibit the CPKA protein.

View Article and Find Full Text PDF

The formation of inclusion complexes between Ginsenoside Rg3 and cyclodextrins represents a promising strategy to enhance the solubility of G-Rg3. Nevertheless, the molecular mechanisms underlying the interaction between G-Rg3 and cyclodextrins have yet to be fully elucidated. In this study, we employed a combination of molecular simulation and experimental methodologies to identify the most effective solubilizing carriers among G-Rg3, β-cyclodextrin (β-CD), 2-hydroxypropyl-β-cyclodextrin (HP-β-CD), and 2,6-dimethyl-β-cyclodextrin (DM-β-CD).

View Article and Find Full Text PDF

Endothelial dysfunction, characterized by a decline in endothelial physiological functions, is a significant aspect of cardiovascular aging, contributing notably to arterial stiffness, atherosclerosis, and hypertension. Transient receptor potential channel V4 (TRPV4), a key member of Ca-permeable channels, plays a crucial role in maintaining vascular functions. However, the role and mechanisms of TRPV4 in aging-related endothelial dysfunction remain incompletely understood.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!