Progress in biomimetic leverages for marine antifouling using nanocomposite coatings.

J Mater Chem B

Department of Mechanical & Construction Engineering, Faculty of Engineering and Environment, Northumbria University, Newcastle upon Tyne, NE1 8ST, UK.

Published: May 2020

Because of the environmental and economic casualties of biofouling on maritime navigation, modern studies have been devoted toward formulating advanced nanoscale composites in the controlled development of effective marine antifouling self-cleaning surfaces. Natural biomimetic surfaces have the advantages of micro-/nanoroughness and minimized free energy characteristics that can motivate the dynamic fabrication of superhydrophobic antifouling surfaces. This review provides an architectural panorama of the biomimetic antifouling designs and their key leverages to broaden horizons in the controlled fabrication of nanocomposite building blocks as force-driven marine antifouling models. As primary antifouling designs, understanding the key functions of surface geometry, heterogeneity, superhydrophobicity, and complexity of polymer/nanofiller composite building blocks on fouling-resistant systems is crucial. This review also discusses a wide range of fouling release coating systems that satisfy the growing demand in a sustainable future environment. For instance, the integration of block, segmented copolymer-based coatings and inorganic-organic hybrid nanofillers enhanced the model's antifouling properties with mechanical, superhydrophobic, chemically inert, and robust surfaces. These nanoscale antifouling systems offered surfaces with minimized free energy, micro-/nanoroughness, anisotropic heterogeneity, superior hydrophobicity, tunable non-wettability, antibacterial efficiency, and mechanical robustness. The confined fabrication of nanoscale orientation, configuration, arrangement, and direction along the architectural composite building blocks would yield excellent air-entrapping ability along the interfacial surface grooves and interfaces, which optimized the antifouling coating surfaces for long-term durability. This review provides systematic evidence of the effect of structurally folded nanocomposites, nanofiller tectonics, and building blocks on the creation of outstanding superhydrophobicity, self-cleaning surfaces, and potential antifouling coatings. The development of modern research gateways is a candidate for the sustainable future of antifouling coatings.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c9tb02119aDOI Listing

Publication Analysis

Top Keywords

building blocks
16
marine antifouling
12
antifouling
11
self-cleaning surfaces
8
minimized free
8
free energy
8
antifouling designs
8
composite building
8
sustainable future
8
antifouling coatings
8

Similar Publications

Secondary nucleation is an emerging approach for synthesizing higher-order supramolecular polymers with exciting topologies. However, a detailed understanding of growth processes and the synthesis of homochiral superstructures is yet to be demonstrated. Here, we report the non-covalent synthesis of dendritic homochiral superstructures using NIR triimide dyes as building blocks via a secondary nucleation elongation process.

View Article and Find Full Text PDF

Kitasatospora continue to be a rich source of chemically diverse and bioactive peptide natural products. This review highlights two strategies in peptide natural products research of Kitasatospora, 1) natural product-first approach guided by a major compound, biological activity or genomic analysis, and 2) enzyme-first approach guided by bioinformatic tools to construct a sequence similarity network for the discovery of biosynthetic enzymes. The structures of peptides, biosynthetic origins of unique building blocks, recent reports of post-translational modifying enzymes for constructing these peptides, and knowledge gap in biosynthesis will also be presented.

View Article and Find Full Text PDF

Tetraarylphosphonium Cations with Excellent Alkaline-Resistant Performance for Anion-Exchange Membranes.

ChemSusChem

December 2024

Tokyo Institute of Technology, Department of Chemical Science and Engineering, 4259 G1-9, Nagatsuta, Midori-ku,, 226-8501, Yokohama, JAPAN.

To realize the robust anion exchange membrane (AEM)-based water splitting modules and fuel cells, the design and synthesis of tetraarylphosphonium (TAP) cations are described as a new class of cationic building blocks that exhibit remarkable alkaline stability under harsh conditions. TAP cations with highly sterically demanding aromatic substituents were efficiently synthesized from triarylphosphine derivatives and highly reactive arynes, whose alkaline degradation proved to be suppressed dramatically by the sterically demanding substituents. In the case of bis(2,5-dimethylphenyl)bis(2,4,6-trimethylphenyl)phosphonium, for example, approximately 60% of the cation survived for 27 d under the forced conditions (i.

View Article and Find Full Text PDF

Background: Right ventricular (RV) function assessment by echocardiography can be challenging due to its complex morphology. Also, increasing use of sedation rather than general anesthesia for transfemoral approach transcatheter aortic valve replacement (TAVR) reduces the need for intraoperative transesophageal echocardiography (TEE). Recent clinical studies have demonstrated the importance of 3-dimensional (3D) echocardiography and a longitudinal strain for RV function assessment.

View Article and Find Full Text PDF

Metallogels built in a bottom-up approach by metal coordination and supramolecular interactions have important potential for the elaboration of smart materials. In this context, we present here the formation of supramolecular coordination polymers driven by the complexation of cobalt(II) or zinc(II) ions with polyoxometalate-based hybrids displaying two terpyridine ligands in a linear arrangement. Thanks to the electrostatic interactions between the polyoxometalate cores and metal nodes, the polymer chains self-assemble into fibers that physically cross-link to form gels above a critical concentration.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!