Purpose: Immune checkpoint inhibitors have recently been approved by the US FDA as first and/or second line therapy in a subset of cancer types. Recent evidence suggests that the quantity of tumor infiltrating lymphocytes (TILs) influences the likelihood of response to immune checkpoint inhibitors. Here, we set out to assess the density of CD8 lymphocytes in a wide range of different cancer types and subtypes.

Methods: The density of CD8 lymphocytes was compared across different cancer types using tissue microarrays (TMAs) composed of up to 50 tumor samples each from 84 different cancer types and subtypes. In total 2652 cancers and 608 normal tissues were successfully analyzed by CD8 immunohistochemistry followed by automated image analysis of digitized slides.

Results: We found that the median CD8 lymphocyte counts ranged from 6 cells/mm in pleomorphic adenoma up to 1573 cells/mm in Hodgkin's lymphoma. The CD8 counts were generally lower in normal tissues compared to cancer tissues. Blood vessels of the spleen were the only non-lymphatic tissue staining positive for CD8. Tumor types approved for checkpoint inhibitor therapy, including malignant melanoma (81), muscle invasive urothelial carcinoma (119), small cell lung cancer (120), clear cell renal cell cancer (153), squamous cell carcinoma (189) and adenocarcinoma of the lung (328) as well as Hodgkin's lymphoma (1573) were all ranking among the upper half of our list. Comparably high CD8 densities (median cells/mm) were also found in several rare and aggressive cancer types including Merkel cell carcinoma (70), angiosarcoma (95), anaplastic thyroid cancer (156) and embryonal carcinoma of the testis (186). In 73 of the 84 analyzed cancer types, the highly variable CD8 counts occasionally exceeded the average CD8 count of tumors for which checkpoint inhibitors have been approved.

Conclusion: These data support the concept that among most tumor types at least some individual cancers may benefit from treatment with immune checkpoint inhibitors.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7214387PMC
http://dx.doi.org/10.1007/s13402-020-00496-7DOI Listing

Publication Analysis

Top Keywords

cancer types
24
checkpoint inhibitors
16
immune checkpoint
12
cancer
10
cd8
9
types
8
density cd8
8
cd8 lymphocytes
8
compared cancer
8
normal tissues
8

Similar Publications

Nucleotide-binding oligomerization domain protein 1 (NOD1) is one of the innate immune receptors that has been associated with tumorigenesis and abnormally expressed in various cancers. However, the role of NOD1 in Glioblastoma Multiforme (GBM) has not been investigated. We used the Tumor Immune Estimate Resource (TIMER) database to compare the differential expression of NOD1 in various tumors.

View Article and Find Full Text PDF

Limited treatment options are available for bladder cancer (BCa) resulting in extremely high mortality rates. Cyclovirobuxine D (CVB-D), a naturally alkaloid, reportedly exhibits notable antitumor activity against diverse tumor types. However, its impact on CVB-D on BCa and its precise molecular targets remain unexplored.

View Article and Find Full Text PDF

Lung cancer is one of the major causes of cancer morbidity and mortality. Subtyping of non-small cell lung cancer is necessary owing to different treatment options. This study is to evaluate the value of immunohistochemical expression of glypican-1 in the diagnosis of lung squamous cell carcinoma (SCC).

View Article and Find Full Text PDF

TP53 mutations and MDM2 polymorphisms in breast and ovarian cancers: amelioration by drugs and natural compounds.

Clin Transl Oncol

January 2025

Inflammation and Cancer Biology Laboratory, Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur, Assam, 784028, India.

Globally, breast and ovarian cancers are major health concerns in women and account for significantly high cancer-related mortality rates. Dysregulations and mutations in genes like TP53, BRCA1/2, KRAS and PTEN increase susceptibility towards cancer. Here, we discuss the impact of mutations in the key regulatory gene, TP53 and polymorphisms in its negative regulator MDM2 which are reported to accelerate cancer progression.

View Article and Find Full Text PDF

Node Reporting and Data System 1.0 (Node-RADS) for the Assessment of Oncological Patients' Lymph Nodes in Clinical Imaging.

J Clin Med

January 2025

Radiology, Multizonal Unit of Rovereto and Arco, APSS Provincia Autonoma Di Trento, 38123 Trento, Italy.

The assessment of lymph node (LN) involvement with clinical imaging is a key factor in cancer staging. Node Reporting and Data System 1.0 (Node-RADS) was introduced in 2021 as a new system specifically tailored for classifying and reporting LNs on computed tomography (CT) and magnetic resonance imaging scans.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!