Effect of nanoscale bioactive glass with radial spherical particles on osteogenic differentiation of rat bone marrow mesenchymal stem cells.

J Mater Sci Mater Med

Jiangsu Key Laboratory of Oral Diseases, Department of Prosthodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, 210029, Jiangsu, China.

Published: March 2020

AI Article Synopsis

  • The study examines two types of bioactive glass—spherical nano-bioactive glass (SNBG) and radical spherical nano-bioactive glass (RSNBG)—to determine their effectiveness in promoting bone repair.
  • Researchers found that RSNBG showed superior physicochemical properties, producing more hydroxyapatite and demonstrating higher concentrations of beneficial ionic-dissolution products compared to SNBG.
  • Results indicated that rBMSCs co-cultured with RSNBG had significantly improved proliferation and osteogenic differentiation, supporting the idea that RSNBG is more effective for bone repair.

Article Abstract

To validate the feasibility of two types of bioactive glass that contains spherical and radical spherical nano-sized particles in promoting bone repair, we hypothesize that radical spherical nano-sized particles have higher bone repair effectiveness than spherical one due to the physicochemical properties. We rigorously compared the physicochemical properties and bioactivities of these two types of bioactive glass. Specifically, we measured the size, surface morphology, concentration of ionic-dissolution products, bioactivity, and biological effects of two groups of bioactive glass on rat bone marrow mesenchymal stem cells (rBMSCs) and evaluate their effect on proliferation and osteogenic differentiation of rBMSCs in vitro. We observed that spherical nano-bioactive glass (SNBG) was spherical with smooth boundary, while the radial spherical nano-bioactive glass (RSNBG) had radial pore on the surface of particle boundary. When the two materials were immersed in simulated body fluid for 24 h, RSNBG produced more and denser hydroxyapatite carbonate than SNBG. The concentration of Ca and Si ions in RSNBG 24 h extract is higher than that of SNBG, while the concentration of P ions is lower. Proliferation, alkaline phosphatase (ALP) activity, intracellular Ca ion concentrations defined as the number of mineralized nodules produced, and the expression of osteogenic genes were significantly higher in rBMSCs co-cultured with 50 µg/mL RSNBG than SNBG. Overall, these results validated our hypothesis that RSNBG can provide better benefit than SNBG for inducing proliferation and osteogenic differentiation in rBMSCs, in turn suggested the feasibility of this RSNBG in further studies and utilization toward the ends of improved bone repair effectiveness.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10856-020-06368-8DOI Listing

Publication Analysis

Top Keywords

bioactive glass
16
osteogenic differentiation
12
bone repair
12
spherical
8
radial spherical
8
rat bone
8
bone marrow
8
marrow mesenchymal
8
mesenchymal stem
8
stem cells
8

Similar Publications

We engineered a microfluidic platform to study the effects of bioactive glass nanoparticles (BGNs) on cell viability under static culture. We incorporated different concentrations of BGNs (1%, 2%, and 3% w/v) in collagen hydrogel (with a concentration of 3.0 mg/mL).

View Article and Find Full Text PDF

Assessment of Silver-Copper Co-Loaded Mesoporous Bioactive Glass as an Advanced Pulp-Capping Material.

J Dent

December 2024

Department of Fragrance and Cosmetic Science, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan; Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan. Electronic address:

Objectives: To evaluate the multifunctionality of silver-copper co-loaded mesoporous bioactive glass (MBG), with the goal of developing an advanced pulp-capping material.

Methods: The synthesis of materials was conducted using the sol-gel method, following the approach described in previous studies but with some modifications. The composition included 80 mol% SiO₂, 15 mol% CaO, and 5 mol% P₂O₅, with additional components of 5 mol% silver, 5 mol% copper, or 1 mol% silver combined with 4 mol% copper, designated as Ag5/80S, Cu5/80S, or Ag1Cu4/80S, respectively.

View Article and Find Full Text PDF

Sweet potatoes are a rich source of nutrients and bioactive compounds, but their quality can be impacted by the drying process. This study investigates the impact of slot jet reattachment (SJR) nozzle and ultrasound (US) combined drying (SJR + US) on sweet potato quality, compared to freeze-drying (FD), SJR drying, and hot air drying (HAD). SJR + US drying at 50 °C closely resembled FD in enhancing quality attributes and outperformed HAD and SJR in key areas such as rehydration, shrinkage ratios, and nutritional composition.

View Article and Find Full Text PDF

Synthesis and characterizing of MgO, 58S bioactive glass and N carboxymethyl chitosan and coating composites of them on SS316L.

Int J Biol Macromol

December 2024

Department of Materials Science and Engineering, Faculty of Engineering & Technology, Tarbiat Modares Universirty, Tehran, Iran.

One of the most effective ways to solve the problems caused by the presence of steel implants in the body is to apply a coating to them. This study aims to develop and optimize composite coatings of magnesium oxide (MgO), 58S bioactive glass (BG), and N-carboxymethyl chitosan (N-CMC) on stainless steel (SS316L) substrates using the electrophoretic deposition (EPD) method. The synthesized materials were characterized using FTIR, XRD, and SEM to confirm their structure and morphology prior to coating.

View Article and Find Full Text PDF

This study investigated the effects of resin composites (RCs) containing surface pre-reacted glass ionomer (S-PRG) filler on the dentin microtensile bond strength (μTBS) of HEMA-free and HEMA-containing universal adhesives (UAs). Water sorption (WS) and solubility (SL), degree of conversion (DC), and ion release were measured. The UAs BeautiBond Xtreme (BBX; 0% HEMA), Modified Adhesive-1 (E-BBX1; 5% HEMA), Modified Adhesive-2 (E-BBX2; 10% HEMA), and two 2-step self-etch adhesives (2-SEAs): FL-BOND II (FBII; with S-PRG filler) and silica-containing adhesive (E-FBII) were used.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!