Azotobacter vinelandii is a microorganism with biotechnological potential because its ability to produce alginate and polyhydroxybutyrate. Large-scale biotechnological processes are oriented to sustainable production by using biomass hydrolysates that are mainly composed by glucose and xylose. In the present study, it was observed that A. vinelandii was unable to consume xylose as the sole carbon source and that glucose assimilation in the presence of xylose was negatively affected. Adaptive Laboratory Evolution (ALE) was used as a metabolic engineering tool in A. vinelandii, to improve both carbohydrate assimilation. As a result of ALE process, the CT387 strain was obtained. The evolved strain (CT387) grown in shaken flask cultivations with xylose (8 g L) and glucose (2 g L), showed an increase of its specific growth rate (µ), as well as of its glucose and xylose uptake rates of 2, 6.45 and 3.57-fold, respectively, as compared with the parental strain. At bioreactor level, the µ, the glucose consumption rate and the relative expression of gluP that codes for the glucose permease in the evolved strain were also higher than in the native strain (1.53, 1.29 and 18-fold, respectively). Therefore, in the present study, we demonstrated the potential of ALE as a metabolic engineering tool for improving glucose and xylose consumption in A. vinelandii.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11274-020-02822-5 | DOI Listing |
Synth Syst Biotechnol
June 2025
Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, PR China.
Lignocellulose bio-refinery via microbial cell factories for chemical production represents a renewable and sustainable route in response to resource starvation and environmental concerns. However, the challenges associated with the co-utilization of xylose and glucose often hinders the efficiency of lignocellulose bioconversion. Here, we engineered yeast to effectively produce free fatty acids from lignocellulose.
View Article and Find Full Text PDFInt Immunopharmacol
January 2025
Complex Carbohydrate Research Center, University of Georgia, Athens, GA, USA. Electronic address:
Global healthcare systems are under tremendous strain due to the increasing prevalence of neurodegenerative disorders. Growing data suggested that overconsumption of high-fat/high-carbohydrates diet (HFHCD) is associated with enhanced incidence of metabolic alterations, neurodegeneration, and cognitive dysfunction. Functional foods have gained prominence in curbing metabolic and neurological deficits.
View Article and Find Full Text PDFPhytochem Anal
January 2025
College of Pharmacy, Xinjiang Medical University, Urumqi, China.
Introduction: Cistanche deserticola Ma (CD), an edible and medicinal plant native to Xinjiang, Inner Mongolia, and Gansu in China, is rich in bioactive polysaccharides known for their health-promoting properties. The polysaccharides of C. deserticola (CDPs) have been shown to possess a range of beneficial activities, including immunomodulatory, anti-aging, antioxidant, and anti-osteoporosis effects.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
School of Pharmaceutical Sciences, Shandong University of Traditional Chinese Medicine, Jinan 250355, China. Electronic address:
To establish the quality control method of Rhodiola rosea L., the multi-level fingerprinting profile was established. The quality evaluation of Rhodiola rosea L.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Luzhou Laojiao Co, Ltd, Luzhou, Sichuan 646000, China; National Engineering Research Center of Solid-State Brewing, Luzhou, Sichuan 646000, China.
Ethanol- and water-soluble polysaccharides were extracted from Baijiu vinasses (EP and WP), respectively. EP was dominantly composed by arabinose, glucose and xylose with molar ratio of 8.81: 76.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!