Investigating how individuals adjust their investment into distinct components of the immune system under natural conditions necessitates to develop immune phenotyping tools that reflect the activation of specific immune components that can be measured directly in the field. Here, we examined individual variation of plasma neopterin, a biomarker of Th1 immunity in wild mandrills (), who are naturally exposed to a suite of parasites, including simian retroviruses and malaria agents. We analyzed a total of 201 plasma samples from 99 individuals and examined the effect of sex, age, social rank, reproductive state and disease status on neopterin levels. We found higher neopterin concentrations in males than females, but were unable to disentangle this effect from possible confounding effects of retroviral infections, which affect nearly all adult males, but hardly any females. We further detected a non-linear age effect with heightened neopterin levels in early and late life. In addition, adult males that harbored very high parasitaemia for also showed high neopterin levels. There was no effect of social rank in either male or female mandrills, and no effect of female reproductive state. Taken together, these results indicate that plasma neopterin may prove useful to investigate individual variation in investment into specific immune components, as well as to monitor the dynamics of immune responses to naturally occurring diseases that elicit a Th1 immune response.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7049574 | PMC |
http://dx.doi.org/10.1016/j.ijppaw.2020.02.009 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!