AI Article Synopsis

  • * Following the incorporation of the ionic liquid, the adsorption capacities for CO, CH, and N gases decreased significantly, but the selectivity for CO improved substantially compared to the unmodified MIL-53(Al).
  • * The modified composite shows strong regeneration potential with stable CO adsorption capacity over multiple cycles, indicating the effectiveness of MIL-53(Al) as a material for CO separation in new IL/MOF composites.

Article Abstract

1--Butyl-3-methylimidazolium methyl sulfate is incorporated into MIL-53(Al). Detailed characterization is done by X-ray fluorescence, Brunauer-Emmett-Teller surface area, scanning electron microscopy, X-ray diffraction, Fourier-transform infrared spectroscopy, and thermogravimetric analysis. Results show that ionic liquid (IL) interacts directly with the framework, significantly modifying the electronic environment of MIL-53(Al). Based on the volumetric gas adsorption measurements, CO, CH, and N adsorption capacities decreased from 112.0, 46.4, and 19.6 cc (STP) g to 42.2, 13.0, and 4.3 cc (STP) g at 5 bar, respectively, upon IL incorporation. Data show that this postsynthesis modification leads to more than two and threefold increase in the ideal selectivity for CO over CH and N separations, respectively, as compared with pristine MIL-53(Al). The isosteric heat of adsorption (Qst) values show that IL incorporation increases CO affinity and decreases CH and N affinities. Cycling adsorption-desorption measurements show that the composite could be regenerated with almost no decrease in the CO adsorption capacity for six cycles and confirm the lack of any significant IL leaching. The results offer MIL-53(Al) as an excellent platform for the development of a new class of IL/MOF composites with exceptional performance for CO separation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7043311PMC
http://dx.doi.org/10.1002/ente.201900157DOI Listing

Publication Analysis

Top Keywords

1--butyl-3-methylimidazolium methyl
8
methyl sulfate
8
mil-53al
5
improving separation
4
separation performance
4
performance mil-53al
4
mil-53al incorporating
4
incorporating 1--butyl-3-methylimidazolium
4
sulfate 1--butyl-3-methylimidazolium
4
sulfate incorporated
4

Similar Publications

This paper presents all-atom molecular dynamics to understand the separation behavior of 5-hydroxymethylfurfural (5-HMF) from 1-butyl-3-methylimidazolium tetrafluoroborate [BMIM][BF] using alkylated phenols as extractants. We have utilized four solvents such as 4-methyl phenol (4-MP), 4-ethyl phenol (4-EP), 4-propyl phenol (4-PP), and 4-butyl phenol (4-BP). We perform structural, dynamic, and rigorous thermodynamic analyses of 5-HMF in the mixture of ILs and solvents.

View Article and Find Full Text PDF

A cationic poly(ionic liquid) (PIL) with pendent butyl imidazolium cations and free bis(trifluoromethylsulfonyl)imide (TFSI) anions and an anionic PIL with pendent TFSI anions and free 1-butyl-3-methylimidazolium cations are synthesized by postpolymerization chemical modification and reversible addition-fragmentation chain-transfer radical copolymerization, respectively. Upon mixing solutions of these two PILs in acetone with stoichiometric amounts of ion pairs, ionic exchanges induce coacervation and, after solvent evaporation, lead to the formation of a dynamic ion gel (DIG) and the concomitant release of free [1-methyl-3-butyl imidazolium]TFSI ionic liquid (IL). A comparison of thermal (), ion conducting (σ), and viscoelastic (elastic moduli (')) properties for DIGs and their parent polyelectrolytes, as well as extracted and IL-doped DIGs, demonstrates the formation of ionic cross-links and the ability to easily produce polymer electrolytes with enhanced ionic conductivity (σ up to 4.

View Article and Find Full Text PDF

The effects of two ionic liquids (ILs), 1-butyl-3-methylimidazolium tetrafluoroborate ([bmim]BF) and 1-butyl-1-methyl pyrrolidinium tetrafluoroborate ([bmp]BF), on a mixture of phospholipids (PLs) 1,2-dipalmitoyl--glycero-3-phosphatidylcholine (DPPC), 1,2-dipalmitoyl--glycero-3-phosphoethanolamine (DPPE), and 1,2-dipalmitoyl--glycero-3-phosphoglycerol (DPPG) (6:3:1, M/M/M, 70% PL) in combination with 30 mol % cholesterol (CHOL) were investigated in the form of a solvent-spread monolayer and bilayer (vesicle). Surface pressure (π)-area () isotherm studies, using a Langmuir surface balance, revealed the formation of an expanded monolayer, while the cationic moiety of the IL molecules could electrostatically and hydrophobically bind to the PLs on the palisade layer. Turbidity, dynamic light scattering (size, ζ-potential, and polydispersity index), electron microscopy, small-angle X-ray/neutron scattering, fluorescence spectroscopy, and differential scanning calorimetric studies were carried out to evaluate the effects of IL on the structural organization of bilayer in the vesicles.

View Article and Find Full Text PDF

Over the past three decades, the synthesis of new ionic liquids (ILs) and the expansion of their use in newer applications have grown exponentially. From the beginning of this vertiginous period, it was known that many of them were hygroscopic, which in some cases limited their use or altered the value of their measured physical properties with all the problems that this entails. In an earlier article, we addressed the hygroscopic grade achieved by the ILs 1-ethyl-3-methylimidazolium chloride, 1-ethyl-3-methylimidazolium bromide, 1-ethyl-3-methylimidazolium methyl sulfate, 1-ethyl-3-methylimidazolium ethyl sulfate, 1-ethyl-3-methylpyridinium ethyl sulfate, 1-ethyl-3-methylimidazolium tosylate, 1-ethyl-3-methylimidazolium tetrafluoroborate, 1-butyl-3-methylimidazolium tetrafluoroborate, 1-dodecyl-3-methylimidazolium tetrafluoroborate, 1-butyl-3-methylpyridinium tetrafluoroborate, 1-butyl-1-methylpiperidinium bis(trifluoromethyl sulfonyl)imide, 1-methyl-1-propylpyrrolidinium bis(trifluoromethyl sulfonyl)imide, 1-butyl-1-methylpyrrolidinium bis(trifluoromethyl sulfonyl)imide, and methyl trioctyl ammonium bis(trifluoromethyl sulfonyl)imide.

View Article and Find Full Text PDF

In this paper, we have performed an all-atom molecular dynamics simulation to understand the structure and dynamics of Na ions in water mixed Ionic liquids (Water in Ionic liquid). Two ionic liquid (IL) systems consist of (1) 1-butyl-3-methylimidazolium [BMIM] tetrafluoroborate [BF] and (2) 1-butyl-3-methylimidazolium [BMIM] hexafluorophosphate [PF] were considered in this work. We understand various intermolecular structures and dynamic and thermodynamic behaviours of Na ions in the watermixed IL systems.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!

A PHP Error was encountered

Severity: Notice

Message: fwrite(): Write of 34 bytes failed with errno=28 No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 272

Backtrace:

A PHP Error was encountered

Severity: Warning

Message: session_write_close(): Failed to write session data using user defined save handler. (session.save_path: /var/lib/php/sessions)

Filename: Unknown

Line Number: 0

Backtrace: