Exposure to severe stress has immediate and prolonged neuropsychiatric consequences and increases the risk of developing Posttraumatic Stress Disorder (PTSD). Importantly, PTSD develops in only a subset of individuals after exposure to a traumatic event, with the understanding of this selective vulnerability being very limited. Individuals who go on to develop PTSD after a traumatic experience typically demonstrate sleep disturbances including persistent insomnia and recurrent trauma-related nightmares. We previously established a repeated social defeat paradigm in which rats segregate into either passively or actively coping subpopulations, and we found that this distinction correlates with measures of vulnerability or resilience to stress. In this study, we examined differences between these two behavioral phenotypes in sleep changes resulting from repeated social defeat stress. Our data indicate that, compared to control and actively coping rats, passively coping rats have less slow-wave sleep (SWS) for at least 2 weeks after the end of a series of exposures to social defeat. Furthermore, resilient rats show less exaggerated motor activation at awakenings from rapid eye movement (REM) sleep and less fragmentation of REM sleep compared to control and passively coping rats. Together, these data associate a passive coping strategy in response to repeated social defeat stress with persisting sleep disturbances. Conversely, an active coping strategy may be associated with resilience to sleep disturbances. These findings may have both prognostic and therapeutic applications to stress-associated neuropsychiatric disorders, including PTSD.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7043017PMC
http://dx.doi.org/10.3389/fnsys.2020.00006DOI Listing

Publication Analysis

Top Keywords

social defeat
20
repeated social
16
sleep disturbances
12
coping rats
12
passive coping
8
sleep
8
actively coping
8
defeat stress
8
compared control
8
passively coping
8

Similar Publications

Objective: Epothilone D (EpoD), microtubule (MT) stabilizing agent, demonstrated promising results in the animal models of Alzheimer's disease, Parkinson's disease and schizophrenia. The present study sought to investigate preventive effects of EpoD on altered changes of MT related proteins and endoplasmic reticulum (ER) stress proteins induced by social defeat stress (SDS).

Methods: We measured protein expression levels of α-tubulin and its post-translational modifications, MT-associated protein 2, stathmin1 and 2 with their phosphorylated forms, and ER stress markers, 78-kDa glucose-regulated protein (GRP-78) and CCAAT/enhancer binding protein (C/EBP)-homologous protein (CHOP) in the prefrontal cortex (PFC) and hippocampus (HIP) of C57BL/6J strain mice treated with EpoD (2 mg/kg) or its vehicle, dimethylsulfoxide (DMSO), and exposed to SDS.

View Article and Find Full Text PDF

Central amygdala NPBWR1 neurons facilitate social novelty seeking and new social interactions.

Sci Adv

January 2025

International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 3058575, Japan.

The formation of new social interactions is vital for social animals, but the underlying neural mechanisms remain poorly understood. We identified CeA neurons, a population in central amygdala expressing neuropeptide B/W receptor-1 (NPBWR1), that play a critical role in these interactions. CeA neurons were activated during encounters with unfamiliar, but not with familiar, mice.

View Article and Find Full Text PDF

Major depressive disorder (MDD) is a common mood condition affecting multiple brain regions and cell types. Changes in astrocyte function contribute to depressive-like behaviors. However, while neuronal mechanisms driving MDD have been studied in some detail, molecular mechanisms by which astrocytes promote depression have not been extensively explored.

View Article and Find Full Text PDF

Astrocytes are the primary cell type in the central nervous system, responsible for maintaining the stability of the brain's internal environment and supporting neuronal functions. Researches have demonstrated the close relationship between astrocytes and the pathophysiology and etiology of major depressive disorder. However, the regulatory mechanisms of astrocytes during depression remain unclear.

View Article and Find Full Text PDF

Chronic social defeat stress (SDS) is a widely employed preclinical model of depression involving repeated exposure to physical defeats using a resident-intruder model in male mice. Exposure to SDS induces depressive-like phenotypes including anhedonia, social withdrawal, and increased drug and alcohol consumption. Previously, we found that expression of the neurokinin-1 receptor (NK1R) is increased in the nucleus accumbens (NAC) of mice that are sensitive to this stressor and increase their alcohol intake.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!