Objective: Corneal nerve fiber length (CNFL) represents a biomarker for diabetic distal symmetric polyneuropathy (DSP). We aimed to determine the reference distribution of annual CNFL change, the prevalence of abnormal change in diabetes, and its associated clinical variables.
Research Design And Methods: We examined 590 participants with diabetes (399 with type 1 diabetes [T1D] and 191 with type 2 diabetes [T2D]) and 204 control patients without diabetes with at least 1 year of follow-up and classified them according to rapid corneal nerve fiber loss (RCNFL) if CNFL change was below the 5th percentile of the control patients without diabetes.
Results: Control patients without diabetes were 37.9 ± 19.8 years old, had median follow-up of three visits over 3.0 years, and mean annual change in CNFL was -0.1% (90% CI -5.9% to 5.0%). RCNFL was defined by values exceeding the 5th percentile of 6% loss. Participants with T1D were 39.9 ± 18.7 years old, had median follow-up of three visits over 4.4 years, and mean annual change in CNFL was -0.8% (90% CI -14.0% to 9.9%). Participants with T2D were 60.4 ± 8.2 years old, had median follow-up of three visits over 5.3 years, and mean annual change in CNFL was -0.2% (90% CI -14.1% to 14.3%). RCNFL prevalence was 17% overall and was similar by diabetes type (64 T1D [16.0%], 37 T2D [19.4%], = 0.31). RNCFL was more common in those with baseline DSP (47% vs. 30% in those without baseline DSP, = 0.001), which was associated with lower peroneal conduction velocity but not with baseline HbA or its change over follow-up.
Conclusions: An abnormally rapid loss of CNFL of 6% per year or more occurs in 17% of diabetes patients. RCNFL may identify patients at highest risk for the development and progression of DSP.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7372054 | PMC |
http://dx.doi.org/10.2337/dc19-0951 | DOI Listing |
Am J Pathol
December 2024
International Ocular Surface Research Center, Key Laboratory for Regenerative Medicine, Institute of Ophthalmology, Jinan University, Guangzhou 510632, China; Department of Ophthalmology, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou 510630, China. Electronic address:
The gut microbiota plays a crucial regulatory role in various physiological processes, yet its impact on corneal homeostasis remains insufficiently understood. Here, we investigate the effects of antibiotic-induced gut dysbiosis (AIGD) and germ-free (GF) conditions on circadian gene expression, barrier integrity, nerve density, and immune cell activity in the corneas of mice. Through RNA sequencing, we found that both AIGD and GF conditions significantly disrupted the overall transcriptomic profile and circadian transcriptomic oscillations in the cornea.
View Article and Find Full Text PDFVestn Oftalmol
December 2024
Krasnov Research Institute of Eye Diseases, Moscow, Russia.
This lecture-format review presents a summary of methods for assessing the condition of corneal nerve fibers (CNF), their clinical significance, and an overview of their anatomy and physiology. It briefly analyzes the structural and functional characteristics of CNF in various ocular diseases, following eye surgeries, and in patients with systemic diseases accompanied by systemic polyneuropathy. The article describes in detail the management algorithm that involves a comprehensive analysis of CNF and Langerhans inflammatory cells, identifies the at-risk groups for developing structural nerve impairments, and outlines the main criteria for CNF assessment.
View Article and Find Full Text PDFOphthalmology
December 2024
John P. Hussman Institute for Human Genomics, University of Miami, FL; Dr. John T. Macdonald Foundation Department of Human Genetics, University of Miami, FL.
Purpose: To investigate the association between epigenetic age acceleration and glaucoma progression.
Design: Retrospective cohort study.
Participants: 100 primary open-angle glaucoma (POAG) patients with fast progression and 100 POAG patients with slow progression.
Front Cell Dev Biol
December 2024
Department of Ophthalmology, Tufts Medical Center, Tufts University School of Medicine, Boston, MA, United States.
The cornea is densely innervated to maintain the integrity of the ocular surface, facilitating functions such as sensation and tear production. Following damage, alterations in the corneal microenvironment can profoundly affect its innervation, potentially impairing healing and sensory perception. One protein frequently upregulated at the ocular surface following tissue damage is galectin-3, but its contribution to corneal nerve regeneration remains unclear.
View Article and Find Full Text PDFOcul Surf
December 2024
Laboratory of Experimental Ophthalmology, Department of Ophthalmology, Pius-Hospital, School of Medicine and Health Sciences, Carl von Ossietzky University Oldenburg, Germany. Electronic address:
The integrity of corneal nerves is critical for ocular surface health, and damages can lead to Neurotrophic Keratopathy (NK). Despite the regenerative abilities of the peripheral nerve system (PNS), corneal nerve regeneration is often incomplete, and the underlying mechanisms are poorly understood. This study aims to identify potential factors that can enhance corneal nerve regeneration for NK treatment, with a focus on Lysophosphatidic acid (LPA).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!