Regulation of trehalose, a typical stress protectant, on central metabolisms, cell growth and division of Saccharomyces cerevisiae CEN.PK113-7D.

Food Microbiol

Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China. Electronic address:

Published: August 2020

Trehalose could protect the typical food microorganism Saccharomyces cerevisiae cell against environmental stresses; however, the other regulation effects of trehalose on yeast cells during the fermentation are still poorly understood. In this manuscript, different concentrations (i.e., 0, 2 and 5% g/v) of trehalose were respectively added into the medium to evaluate the effect of trehalose on growth, central metabolisms and division of S. cerevisiae CEN.PK113-7D strain that could uptake exogenous trehalose. Results indicated that addition of trehalose could inhibit yeast cell growth in the presence or absence of 8% v/v ethanol stress. Exogenous trehalose inhibited the glucose transporting efficiency and reduced intracellular glucose content. Simultaneously, increased intracellular trehalose content destroyed the steady state of trehalose cycle and caused the imbalance between the upper glycolysis part and the lower part, thereby leading to the dysfunction of glycolysis and further inhibiting the normal yeast cell growth. Moreover, energy metabolisms were impaired and the ATP production was reduced by addition of trehalose. Finally, exogenous trehalose-associated inhibition on yeast cell growth and metabolisms delayed cell cycle. These results also highlighted our knowledge about relationship between trehalose and growth, metabolisms and division of S. cerevisiae cells during fermentation.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.fm.2020.103459DOI Listing

Publication Analysis

Top Keywords

cell growth
16
yeast cell
12
trehalose
11
central metabolisms
8
saccharomyces cerevisiae
8
cerevisiae cenpk113-7d
8
cells fermentation
8
trehalose growth
8
metabolisms division
8
division cerevisiae
8

Similar Publications

Deep analysis of the major histocompatibility complex genetic associations using covariate analysis and haploblocks unravels new mechanisms for the molecular etiology of Elite Control in AIDS.

BMC Immunol

January 2025

Laboratoire Génomique, Bioinformatique, et Chimie Moléculaire, Conservatoire National des Arts et Métiers, 2 rue Conté 75003, Paris, EA7528, France.

Introduction: We have reanalyzed the genomic data from the International Collaboration for the Genomics of HIV (ICGH), focusing on HIV-1 Elite Controllers (EC).

Methods: A genome-wide association study (GWAS) was performed, comparing 543 HIV-1 EC individuals with 3,272 uninfected controls (CTR) of European ancestry. 8 million single nucleotide polymorphisms (SNPs) and HLA class I and class II gene alleles were imputed to compare EC and CTR.

View Article and Find Full Text PDF

Screened of long non-coding RNA related to wool development and fineness in Gansu alpine fine-wool sheep.

BMC Genomics

January 2025

Gansu Key Laboratory of Herbivorous Animal Biotechnology, College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China.

Wool growth and fineness regulation is influenced by some factors such as genetics and environment. At the same time, lncRNA participates in numerous biological processes in animal production. In this research, we conducted a thorough analysis and characterization of the microstructure of wool, along with long non-coding RNAs (lncRNAs), their target genes, associated pathways, and Gene Ontology terms pertinent to the wool fineness development.

View Article and Find Full Text PDF

The mechanism of Hespintor (a protein of serpin family) inhibitory action on the growth of inoculated hepatocellular carcinoma was studied in a model of human hepatoma in nude mice by using on long-noncoding RNA (lncRNA) sequencing. Two days after tumor transplantation, Hespintor or normal saline was injected into the caudal vein at a dose of 15 μg/kg (2 times a week over 4 weeks). The tumors were isolated in 4 weeks after subcutaneous injection of human hepatoma MHCC97-H cells.

View Article and Find Full Text PDF

Characterization and genomic analysis of a jumbo phage, PG216, with broad lytic activity against several Vibrio species.

Arch Virol

January 2025

Jiangsu Province Engineering Research Center for Marine Bio-resources Sustainable Utilization, College of Oceanography, Hohai University, Nanjing, Jiangsu, China.

In this study, a lytic phage, named PG216, was obtained from seawater collected in Qingdao, using Vibrio parahaemolyticus strain G299 as its host. Transmission electron microscopy revealed that phage PG216 has an icosahedral head with a diameter of 100 ± 6.7 nm and a contractible tail with a length of 126 ± 6.

View Article and Find Full Text PDF

Excessive accumulation of auxin inhibits protocorm development during germination of Paphiopedilum spicerianum.

Plant Cell Rep

January 2025

Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China.

Excessive auxin accumulation inhibits protocorm development during germination of Paphiopedilum spicerianum, delaying shoot meristem formation by downregulating boundary genes (CUC1, CUC2, CLV3) and promoting fungal colonization, essential for seedling establishment. Paphiopedilum, possess high horticultural and conservational value. Asymbiotic germination is a common propagation method, but high rates of protocorm developmental arrest hinder seedling establishment.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!