Micellar and sub-micellar liquid chromatography of terephthalic acid contaminants using a C18 column coated with Tween 20.

Anal Chim Acta

Department of Chemistry and Biochemistry, 651 E. High Street, Miami University, Oxford, OH, 45056, USA. Electronic address:

Published: April 2020

The tremendous amounts of terephthalic acid (TPA) produced globally require consistent monitoring of its contaminants during the different stages of production for quality control purposes. In this paper, a simple, robust and green liquid chromatography method has been developed using an isocratic 100% aqueous mobile phase at pH 2 (dilute sulfuric acid) to separate TPA contaminants (mono-, di-, and tri-carboxylic aromatic acids) on a C18 stationary phase coated with Tween 20 (polyoxyethylene(20)sorbitan monolaurate). After optimization of all chromatographic conditions, near baseline separation of the nine carboxylic acids under investigation was achieved with a 2.5 mL/min flow rate on a 5 micron C18 silica column (100 x 4.6 mm) in under 20 min. The modified stationary phase showed an excellent capability to separate structural isomers in a reasonable time, markedly better that the bare C18 stationary phase. Plots of ln retention factor versus 1/temperature showed the expected linear relationship for the di- and tri-carboxylic aromatic acids (single retention mechanism likely) but a quadratic fit for the mono-carboxylic aromatic acids (dual retention mechanism likely). Due to the stability of the surfactant modified stationary phase, future potential mass spectrometry compatibility was shown through the alternative use of trifluoroacetic acid in the 100% HO (no Tween) mobile phase but still with UV detection. The developed method with 0.001% (vol/vol) Tween in the mobile phase was successfully used to analyze two different types of TPA industrial samples for all nine components plus revealing some other impurity peaks. The lowest limit of detection was 0.010 nmoles for o-phthalic acid and p-toluic acid (PTA), while the highest was 0.065 nmoles for 4-carboxybenzaldehyde (CBA). The concentrations of these important contaminants, PTA and CBA, in the mother liquor sample were 3348 mg/L and 1806 mg/L, respectively, while their respective concentrations in the purified TPA powder were 135 mg/kg and 17.7 mg/kg.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.aca.2020.01.036DOI Listing

Publication Analysis

Top Keywords

stationary phase
16
mobile phase
12
aromatic acids
12
liquid chromatography
8
terephthalic acid
8
coated tween
8
di- tri-carboxylic
8
tri-carboxylic aromatic
8
c18 stationary
8
modified stationary
8

Similar Publications

To overtake competitors, microbes produce and secrete secondary metabolites that kill neighbouring cells and sequester nutrients. This metabolite-mediated competition probably evolved in complex microbial communities in the presence of viral pathogens. We therefore hypothesized that microbes secrete natural products that make competitors sensitive to phage infection.

View Article and Find Full Text PDF

Layer-by-Layer (LbL) self-assembly encapsulation is a promising technology for the protection and delivery of lactic acid bacteria. However, laboratory-scale encapsulation is often time-consuming, involves intensive protocols tailored for small-scale operations, requires substantial amounts of energy and water, and results in a low yield of encapsulated biomass. Scaling-up this process to a bench-bioreactor scale is not simply a matter of increasing culture volume as different key parameters (not particularly relevant at lab scale) become critical, including biomass production, the number of polymer layers, and the biomass-to-polymer mass ratio.

View Article and Find Full Text PDF

Retention mechanism on phosphodiester stationary phases in HILIC and purely aqueous mobile phase, Part I: The problem of hold-up volume determination.

J Chromatogr A

December 2024

HUN-REN Molecular Interactions in Separation Science Research Group, Ifjúság útja 6, H-7624 Pécs, Hungary; Department of Analytical and Environmental Chemistry and Szentágothai Research Center, University of Pécs, Ifjúság útja 6, H-7624 Pécs, Hungary; Institute of Bioanalysis, Medical Scool, University of Pécs, Szigeti út, H-7624 Pécs, Hungary. Electronic address:

Non-destructive chromatographic methods were used to determine the hold-up volumes of four self-packed columns containing embedded phosphate groups. The stationary phases are named Diol-P-C10, Diol-P-C18, Diol-P-Benzyl and Diol-P-Chol. The hydrophobicity of organic ligands bound to the phosphate group increases in the benzyl< decyl < octadecyl View Article and Find Full Text PDF

Facile Fabrication of Monodisperse Vinyl Hybrid Core-Shell Silica Microsphere with Short Range Radial Channel in bi-phase System.

Small

January 2025

Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an, 710127, China.

The development of monodisperse hybrid silica microspheres with highly regular pore structure and uniform distribution of functional groups have significant value in the biomolecular separation field. In this work, the short range ordered pore channels are precisely constructed onto the non-porous silica microsphere surface by a bi-phase assembly method, and the cylindrical silica channel introduced a plethora of vinyl groups by "one-pot" co-condensation to form vinyl hybrid silica shell. As hydrophilic interaction chromatography (HILIC) stationary phase, the vinyl hybrid core-shell silica microsphere is simply modified with zwitterion glutathione (SiO@SiO-GSH), in which the HILIC enrichment process is significantly shortened due to its specific porous characteristics.

View Article and Find Full Text PDF

A new analytical method was developed for the determination of 14 multiclass emerging organic contaminants in surface waters using LC-MS, and Dispersive Liquid-Liquid Microextraction (DLLME) for extraction. Different Natural Deep Eutectic Solvents (NADESs) composed of terpenes and organic acids were tested as extraction solvents and characterized by Fourier Transform Infrared Spectroscopy (FTIR), Hydrogen Nuclear Magnetic Resonance Spectroscopy (H-NMR), Differential Scanning Calorimetry (DSC), Thermogravimetric Analysis (TGA), density, and viscosity, eliminating the need to use traditional chlorinated solvents. NADES produced with butyric acid and thymol showed the best results and was selected for application for the first time in the extraction of emerging organic contaminants of different classes in water samples.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!