Step width variability as a discriminator of age-related gait changes.

J Neuroeng Rehabil

Department of Biomechanics and Center for Research in Human Movement Variability, University of Nebraska at Omaha, Biomechanics Research Building 214, 6160 University Drive South, Omaha, NE, 68182-0860, USA.

Published: March 2020

Background: There is scientific evidence that older adults aged 65 and over walk with increased step width variability which has been associated with risk of falling. However, there are presently no threshold levels that define the optimal reference range of step width variability. Thus, the purpose of our study was to estimate the optimal reference range for identifying older adults with normative and excessive step width variability.

Methods: We searched systematically the BMC, Cochrane Library, EBSCO, Frontiers, IEEE, PubMed, Scopus, SpringerLink, Web of Science, Wiley, and PROQUEST databases until September 2018, and included the studies that measured step width variability in both younger and older adults during walking at self-selected speed. Data were pooled in meta-analysis, and standardized mean differences (SMD) with 95% confidence intervals (CI) were calculated. A single-decision threshold method based on the Youden index, and a two-decision threshold method based on the uncertain interval method were used to identify the optimal threshold levels (PROSPERO registration: CRD42018107079).

Results: Ten studies were retrieved (older adults = 304; younger adults = 219). Step width variability was higher in older than in younger adults (SMD = 1.15, 95% CI = 0.60; 1.70; t = 4.72, p = 0.001). The single-decision method set the threshold level for excessive step width variability at 2.14 cm. For the two-decision method, step width variability values above the upper threshold level of 2.50 cm were considered excessive, while step width variability values below the lower threshold level of 1.97 cm were considered within the optimal reference range.

Conclusion: Step width variability is higher in older adults than in younger adults, with step width variability values above the upper threshold level of 2.50 cm to be considered as excessive. This information could potentially impact rehabilitation technology design for devices targeting lateral stability during walking.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7059259PMC
http://dx.doi.org/10.1186/s12984-020-00671-9DOI Listing

Publication Analysis

Top Keywords

step width
44
width variability
40
older adults
16
threshold level
16
optimal reference
12
excessive step
12
variability values
12
step
11
variability
10
width
10

Similar Publications

Background: Wider step width and lower step-to-step variability are linked to improved gait stability and reduced fall risk. It is unclear if patients with spinocerebellar ataxia (SCA) can learn to adjust these aspects of gait to reduce fall risk.

Objectives: The aims were to examine the possibility of using wearable step width haptic biofeedback to enhance gait stability and reduce fall risk in individuals with SCA.

View Article and Find Full Text PDF

Multiexposure Grayscale Patterns with Low-Energy Electrons.

ACS Appl Mater Interfaces

January 2025

Zhejiang Key Laboratory of 3D Micro/Nano Fabrication and Characterization, School of Engineering, Westlake University, Hangzhou, Zhejiang 310030, China.

High-energy electron beam exposure is generally recognized as the standard for achieving high-precision nanofabrication. Low-energy electron beam exposure techniques offer advantages in 3D manufacturing; however, they have received limited attention in traditional processes due to precision limitations and insufficient exposure, leading to an underestimation of their potential. In this article, we introduce a nanofabrication strategy using low-energy electrons in ice-assisted electron-beam lithography (iEBL) alleviating the compatibility issue between resolution and quasi-3D manufacturing.

View Article and Find Full Text PDF

Adapting lateral stepping control to walk on winding paths.

J Biomech

January 2025

Department of Kinesiology, The Pennsylvania State University, University Park, PA 16802, USA. Electronic address:

Most often, gait biomechanics is studied during straight-ahead walking. However, real-life walking imposes various lateral maneuvers people must navigate. Such maneuvers challenge people's lateral balance and can induce falls.

View Article and Find Full Text PDF
Article Synopsis
  • Cobalt oxide (CoO) is an attractive electrode material for supercapacitors due to its affordability, natural abundance, non-toxicity, and high capacitance.
  • Researchers developed a binder-less molybdenum doped CoO (Mo@CoO) integrated electrode using a simple electric discharge corrosion (EDC) method, which allows for direct synthesis without templates or additives.
  • The study found that the Mo@CoO based supercapacitor with a specific discharge pulse width achieved a significantly higher capacitance and quick charge/discharge capabilities, showcasing the EDC method's potential for fabricating efficient electrodes for energy storage and sensing applications.
View Article and Find Full Text PDF

Ternary InGaP quantum dots (QDs) have emerged as promising materials for efficient blue emission, owing to their tunable bandgap, high stability, and superior optoelectronic properties. However, most reported methods for Ga incorporation into the InP structure have predominantly relied on cation exchange in pre-grown InP QDs at elevated temperatures above 280 °C. This is largely due to the fact that, when heating In and P precursors in the presence of Ga, an InP/GaP core-shell structure readily forms.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!