When two therapeutic agents are combined in a single formulation, i.e., coformulated, the quality and safety of the individual agents must be preserved. Here we describe an approach to evaluate the quality attributes of two individual monoclonal antibodies (mAbs), designated mAb-A and mAb-B, in coformulation. The mAbs were fractionated from heat-stressed coformulated drug product (DP) by hydrophobic interaction chromatography. Each purified mAb fraction was then compared with mAb-A and mAb-B in their individual formulations from the same drug substance sources used to make the coformulated DP lot, which was subjected to the same stress conditions. Product variants were evaluated and compared by using several analytical tests, including high-performance size exclusion chromatography (HPSEC), reducing and nonreducing gel electrophoresis, ion-exchange chromatography, capillary isoelectric focusing, and peptide mapping with mass spectrometry. Intermolecular interactions in coformulated and photostressed DPs were studied by evaluating aggregates fractionated from coformulated DP by HPSEC. Aggregate fractions of coformulated DP contained dimers, but not coaggregates, of mAb-A or mAb-B. Moreover, extensive assays for higher-order structure and biological interactions confirmed that there was no interaction between the two mAb molecules in the coformulation. These results demonstrate that the two coformulated therapeutic mAbs had the same quality attributes as the individually formulated mAb-A and mAb-B, no new quality attributes were formed, and no physicochemical, intermolecular, or biological interactions occurred between the two components. The approach described here can be used to monitor the product quality of other coformulated antibodies.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7153825 | PMC |
http://dx.doi.org/10.1080/19420862.2020.1738691 | DOI Listing |
Biotechnol Bioeng
February 2025
Data Rich Measurements, Analytical Enabling Capabilities. Merck & Co., Inc., Rahway, New Jersey, USA.
Characterizing co-formulated monoclonal antibodies (mAbs) poses significant challenges in the pharmaceutical industry. Due to the high structural similarity of the mAbs, traditional analytical methods, compounded by the lengthy method development process, hinder product development and manufacturing efficiency. There is increasing critical need in the pharmaceutical industry to streamline analytical approaches, minimizing time and resources, ensuring a rapid clinical entry and cost-effective manufacturing.
View Article and Find Full Text PDFJ Pharm Biomed Anal
January 2025
Biologics' Process Research & Development (BPR&D), MRL, Merck & Co., Inc., Rahway, NJ, USA.
During production, harvested cell culture fluid (HCCF) can degrade due to reductases breaking interchain disulfide bonds, forming low molecular weight (LMW) impurities that contain free sulfhydryl and high molecular weight (HMW) impurities through disulfide shuffling. Thus, detecting and quantifying the free sulfhydryl increase in HCCF is critical. Herein, Raman spectroscopy is implemented as a process analytical technology, and multivariate data analysis is applied to characterize and quantify sulfhydryl formation in HCCF with disulfide-containing indicator molecules.
View Article and Find Full Text PDFEur J Pharm Sci
December 2024
Boehringer Ingelheim Pharma GmbH & Co. KG, Innovation Unit, PDB-TIP, Birkendorfer Straße 65, D-88397 Biberach an der Riss, Germany. Electronic address:
Protein formulations may form proteinaceous particles that vary in size from nanometers to millimeters. Monitoring the kinetics of protein particle formation, e.g.
View Article and Find Full Text PDFElectrophoresis
November 2024
Department of Chemical Engineering, Indian Institute of Technology Delhi, New Delhi, India.
A holistic understanding of the charge heterogeneity in monoclonal antibodies (mAbs) is paramount for ensuring acceptable product quality. Hence, biotherapeutic manufacturers are expected to thoroughly characterize their products via advanced analytical techniques. Recently, two-dimensional liquid chromatography (2DLC) methods have gained popularity for resolving complex charged species.
View Article and Find Full Text PDFJ Am Soc Mass Spectrom
December 2023
Department of Chemical Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India.
Assessment of product quality attributes such as charge heterogeneity is an upmost requisite for the release of a monoclonal antibody (mAb). Analytical techniques, such as cation-exchange chromatography (CEX), accomplish this, causing the mAb to separate into acidic, main species, and basic variants. Here, an online volatile-salt-containing two-dimensional liquid chromatography (2D-LC) method coupled with mass spectrometry (MS) was performed to characterize the charge heterogeneity of mAbs using CEX chromatography in the first dimension (D) and anion-exchange chromatography (AEX) in the second dimension (D).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!