A two-step approach of improving the thermoelectric properties of Poly(3,4-ethylenedioxythiophene)poly(4-styrenesulfonate) (PEDOT:PSS) via the addition of the ionic liquid, 1-Ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide (EMIM:TFSI) and subsequent reduction with NaBH is presented. The addition of 2.5 v/v% of EMIM:TFSI to PEDOT:PSS increases the electrical conductivity from 3 S·cm to 1439 S·cm at 40 °C. An additional post treatment using the reducing agent, NaBH, increases the Seebeck coefficient of the film from 11 µV·K to 30 µV·K at 40 °C. The combined treatment gives an overall improvement in power factor increase from 0.04 µW·m·K to 33 µW·m·K below 140 °C. Raman and XPS measurements show that the increase in PEDOT:PSS conductivity is due to PSS separation from PEDOT and a conformational change of the PEDOT chains from the benzoid to quinoid molecular orientation. The improved Seebeck coefficient is due to a reduction of charge carriers which is evidenced from the UV-VIS depicting the emergence of polarons.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7182861PMC
http://dx.doi.org/10.3390/polym12030559DOI Listing

Publication Analysis

Top Keywords

seebeck coefficient
12
electrical conductivity
8
ionic liquid
8
enhanced electrical
4
conductivity seebeck
4
pedotpss
4
coefficient pedotpss
4
pedotpss two-step
4
two-step ionic
4
liquid nabh
4

Similar Publications

Thermoelectric Modulation of Neat TiCT MXenes by Finely Regulating the Stacking of Nanosheets.

Nanomicro Lett

December 2024

Department of Materials Science, Fudan University, Shanghai, 200433, People's Republic of China.

Emerging two-dimensional MXenes have been extensively studied in a wide range of fields thanks to their superior electrical and hydrophilic attributes as well as excellent chemical stability and mechanical flexibility. Among them, the ultrahigh electrical conductivity (σ) and tunable band structures of benchmark TiCT MXene demonstrate its good potential as thermoelectric (TE) materials. However, both the large variation of σ reported in the literature and the intrinsically low Seebeck coefficient (S) hinder the practical applications.

View Article and Find Full Text PDF

Optimization of Thermoelectric Performance in p-Type SnSe Crystals Through Localized Lattice Distortions and Band Convergence.

Adv Sci (Weinh)

December 2024

Shenzhen Key Laboratory of Advanced Thin Films and Applications, College of Physics and optoelectronic engineering, Shenzhen University, Shenzhen, 518060, P. R. China.

Crystalline thermoelectric materials, especially SnSe crystals, have emerged as promising candidates for power generation and electronic cooling. In this study, significant enhancement in ZT is achieved through the combined effects of lattice distortions and band convergence in multiple electronic valence bands. Density functional theory (DFT) calculations demonstrate that cation vacancies together with Pb substitutional doping promote the band convergence and increase the density of states (DOS) near the Fermi surface of SnSe, leading to a notable increase in the Seebeck coefficient (S).

View Article and Find Full Text PDF

In this contribution, doping of oriented thin films is investigated for three PBTTT polymers bearing different side chains including linear alkyl ─(CH)─H, single ether ─(CH)─O─(CH)─H and alkyl-siloxane ─(CH)─(Si(CH)O)─Si(CH) A combination of transmission electron microscopy, polarized UV-vis-NIR spectroscopy and transport measurements helps uncover the essential role of the chemical nature of side chains on the efficacy of the doping and on the resulting thermoelectric performances in oriented PBTTT films. Siloxane side chains help to reach record alignment level of PBTTT with dichroic ratio beyond 50 for an optimized rubbing temperature but they impede effective doping of PBTTT crystals with FTCNNQ, resulting in very poor TE properties. By contrast, doping the amorphous phase of all three PBTTTs with magic blue (MB) results in excellent TE performances.

View Article and Find Full Text PDF

Unique thermoelectric properties of low-cost, widely available conducting polymers and multi-layered graphite structures have motivated the development of flexible thermoelectric generators using screen printing for low-temperature applications. Composites of polyaniline and graphite in different ratios with one weight percentage of bismuth telluride were prepared to fabricate flexible thermoelectric generators. The performance of the devices showed that the addition of graphite to polyaniline reduced the band gap energy from 2.

View Article and Find Full Text PDF

Context: Vanadium hydride is of significant interest because of its potential applications in thermoelectric materials and hydrogen storage technologies. Understanding its structural, electronic, and thermoelectric properties is crucial for optimizing its performance in these applications. This study investigates these properties via density functional theory (DFT), revealing key insights into its stability and efficiency as a thermoelectric material.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!