miR-155 antagomir protect against DSS-induced colitis in mice through regulating Th17/Treg cell balance by Jarid2/Wnt/β-catenin.

Biomed Pharmacother

Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.

Published: June 2020

Background: Th subsets particularly T helper 17 and regulatory T cells play a critical role in immune balance in colonic mucosa of Inflammatory Bowel Disease. Recent studies have indicated miR-155 is overexpressed in the colonic mucosa in IBD patients. Thus, whether and how miR-155 influences Th17/Treg cell balance in IBD patients is worthy of researching.

Methods: We divided mice into four groups: the mice oral administration of 3.0 % DSS in fresh drinking water for 7 days except normal group. In this period, starting from the fifth day, the miR-155 and NC antagomir group were carried out by intraperitoneal injection of miR-155 antagomirs and corresponding negative controls. In vitro, we isolated naïve CD4T cells and divided into two groups: the cells were transfected with mmu-miR-155-5p inhibitor or corresponding negative controls and then induced differentiation.

Results: We found miR-155 antagomir can reach colon tissues in DSS-induced colitis and indeed ameliorated DSS-induced experimental colitis. Subsequently, we proved the levels of Th17 cells in spleens and Mesenteric lymph nodes and its associated IL-6, IL-17A and RORγt in colonic tissues were dramatically decreased and TGF-β1 raised in DSS + miR-155 antagomir group. However, miR-155 antagomir significantly increased the expression of Tregs. In vitro, we found miR-155 inhibitor could improve the Tregs but decrease Th17 cells. Finally, we dig out that Jarid2 was apparently improved by miR-155 antagomir, Wnt/β-catenin and its associated T cell factor-4 (TCF-4) and Cyclin D1 expression were positively correlated with Jarid2.

Conclusion: Silencing of miR-155 attenuates DSS-induced colitis by regulating Th17/Treg cell balance and Jarid2/Wnt/β-catenin participated in the process.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biopha.2020.109909DOI Listing

Publication Analysis

Top Keywords

mir-155 antagomir
24
dss-induced colitis
12
th17/treg cell
12
cell balance
12
mir-155
11
regulating th17/treg
8
balance jarid2/wnt/β-catenin
8
colonic mucosa
8
ibd patients
8
antagomir group
8

Similar Publications

Neuropathic pain following peripheral nerve injury results from maladaptive changes in neurons and immune cells contribution to mechanisms underlying chronic pain. Specifically, in dorsal root ganglia (DRG), sensory neuron cell bodies release extracellular vesicles (EVs) which promote pro-inflammatory macrophage accumulation that facilitates nociceptive signalling. Here, we show that macrophages shuttle EVs to neurons.

View Article and Find Full Text PDF

Acute ischemic stroke (AIS) is a dangerous neurological disease associated with an imbalance in Th17/Treg cells and abnormal activation of the Wnt/β-catenin signaling pathway. This study aims to investigate whether inhibition of miR-155 can activate the Wnt/β-catenin signaling pathway to improve Th17/Treg imbalance and provide neuroprotective effects against stroke. We employed a multi-level experimental design.

View Article and Find Full Text PDF

Introduction: Triple-Negative Breast Cancer (TNBC) is the most common type of breast cancer (BC). In order to develop effective treatments for TNBC, it is vital to identify potential therapeutic targets. Angiogenesis stimulates tumor growth and metastasis in TNBC, and miR-155 plays a crucial role in this process.

View Article and Find Full Text PDF

Background: The most aggressive form of breast cancer (BC) is Triple-Negative BC (TNBC), with the poorest prognosis, accounting for nearly 15% of all cases. Since there is no effective treatment, novel strategies, especially targeted therapies, are essential to treat TNBC. Exosomes are nano-sized microvesicles derived from cells and transport various intracellular cargoes, including microRNAs (miRNAs).

View Article and Find Full Text PDF

This study explored the impact of microRNAs, specifically mmu-miR-1a-3p and mmu-miR-155-5p, on stress susceptibility and resilience in mice of different strains. Previous research had established that C57BL/6J mice were stress-susceptible, while NET-KO and SWR/J mice displayed stress resilience. These strains also exhibited variations in the serum levels of mmu-miR-1a-3p and mmu-miR-155-5p.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!