Hypertension is the leading risk factor of cardiovascular disease and has profound effects on both the structure and function of the microvasculature. Abnormalities of the retinal vasculature may reflect the degree of microvascular damage due to hypertension, and these changes can be detected with fundus photographs. This study aimed to use deep learning technique that can detect subclinical features appearing below the threshold of a human observer to explore the effect of hypertension on morphological features of retinal microvasculature. We collected 2012 retinal photographs which included 1007 from patients with a diagnosis of hypertension and 1005 from normotensive control. By method of vessel segmentation, we removed interference information other than retinal vasculature and contained only morphological information about blood vessels. Using these segmented images, we trained a small convolutional neural networks (CNN) classification model and used a deep learning technique called Gradient-weighted Class Activation Mapping (Grad-CAM) to generate heat maps for the class "hypertension". Our model achieved an accuracy of 60.94%, a specificity of 51.54%, a precision of 59.27%, and a recall of 70.48%. The AUC was 0.6506. In the heat maps for the class "hypertension", red patchy areas were mainly distributed on or around arterial/venous bifurcations. This indicated that the model has identified these regions as being the most important for predicting hypertension. Our study suggested that the effect of hypertension on retinal microvascular morphology mainly occurred at branching of vessels. The change of the branching pattern of retinal vessels was probably the most significant in response to elevated blood pressure.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7058325 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0230111 | PLOS |
JAMA Cardiol
January 2025
Department of Emergency Medicine, Rush University Medical Center, Chicago, Illinois.
Importance: Lung ultrasound (LUS) aids in the diagnosis of patients with dyspnea, including those with cardiogenic pulmonary edema, but requires technical proficiency for image acquisition. Previous research has demonstrated the effectiveness of artificial intelligence (AI) in guiding novice users to acquire high-quality cardiac ultrasound images, suggesting its potential for broader use in LUS.
Objective: To evaluate the ability of AI to guide acquisition of diagnostic-quality LUS images by trained health care professionals (THCPs).
ACS Biomater Sci Eng
January 2025
Mechanical Engineering Department, Worcester Polytechnic Institute, Worcester, Massachusetts 01609, United States.
Mechanical properties of engineered connective tissues are critical for their success, yet modern sensors that measure physical qualities of tissues for quality control are invasive and destructive. The goal of this work was to develop a noncontact, nondestructive method to measure mechanical attributes of engineered skin substitutes during production without disturbing the sterile culture packaging. We optimized a digital holographic vibrometry (DHV) system to measure the mechanical behavior of Apligraf living cellular skin substitute through the clear packaging in multiple conditions: resting on solid agar as when the tissue is shipped, on liquid media in which it is grown, and freely suspended in air as occurs when the media is removed for feeding.
View Article and Find Full Text PDFJ Speech Lang Hear Res
January 2025
Centre for Language Studies, Radboud University, Nijmegen, the Netherlands.
Purpose: In this review article, we present an extensive overview of recent developments in the area of dysarthric speech research. One of the key objectives of speech technology research is to improve the quality of life of its users, as evidenced by the focus of current research trends on creating inclusive conversational interfaces that cater to pathological speech, out of which dysarthric speech is an important example. Applications of speech technology research for dysarthric speech demand a clear understanding of the acoustics of dysarthric speech as well as of speech technologies, including machine learning and deep neural networks for speech processing.
View Article and Find Full Text PDFClin Exp Nephrol
January 2025
Kawasaki Medical School, Department of Nephrology and Hypertension, Kurashiki, Japan.
Background: Chronic kidney disease (CKD) represents a significant public health challenge, with rates consistently on the rise. Enhancing kidney function prediction could contribute to the early detection, prevention, and management of CKD in clinical practice. We aimed to investigate whether deep learning techniques, especially those suitable for processing missing values, can improve the accuracy of predicting future renal function compared to traditional statistical method, using the Japan Chronic Kidney Disease Database (J-CKD-DB), a nationwide multicenter CKD registry.
View Article and Find Full Text PDFNeuroradiology
January 2025
Department of Radiology, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210002, Jiangsu, China.
Purpose: We aimed to validate a clinically available artificial intelligence (AI) model to assist general radiologists in the detection of intracranial aneurysm (IA) in a multi-reader multi-case (MRMC) study, and to explore its performance in routine clinical settings.
Methods: Two distinct cohorts of head CT angiography (CTA) data were assembled to validate an AI model. Cohort 1, comprising gold-standard consecutive CTA cases, was used in an MRMC study involving six board-certified general radiologists.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!