Background: Electrocardiographic QT interval prolongation is the most widely used risk marker for ventricular arrhythmia potential and thus an important component of drug cardiotoxicity assessments. Several antimalarial medicines are associated with QT interval prolongation. However, interpretation of electrocardiographic changes is confounded by the coincidence of peak antimalarial drug concentrations with recovery from malaria. We therefore reviewed all available data to characterise the effects of malaria disease and demographic factors on the QT interval in order to improve assessment of electrocardiographic changes in the treatment and prevention of malaria.
Methods And Findings: We conducted a systematic review and meta-analysis of individual patient data. We searched clinical bibliographic databases (last on August 21, 2017) for studies of the quinoline and structurally related antimalarials for malaria-related indications in human participants in which electrocardiograms were systematically recorded. Unpublished studies were identified by the World Health Organization (WHO) Evidence Review Group (ERG) on the Cardiotoxicity of Antimalarials. Risk of bias was assessed using the Pharmacoepidemiological Research on Outcomes of Therapeutics by a European Consortium (PROTECT) checklist for adverse drug events. Bayesian hierarchical multivariable regression with generalised additive models was used to investigate the effects of malaria and demographic factors on the pretreatment QT interval. The meta-analysis included 10,452 individuals (9,778 malaria patients, including 343 with severe disease, and 674 healthy participants) from 43 studies. 7,170 (68.6%) had fever (body temperature ≥ 37.5°C), and none developed ventricular arrhythmia after antimalarial treatment. Compared to healthy participants, patients with uncomplicated falciparum malaria had shorter QT intervals (-61.77 milliseconds; 95% credible interval [CI]: -80.71 to -42.83) and increased sensitivity of the QT interval to heart rate changes. These effects were greater in severe malaria (-110.89 milliseconds; 95% CI: -140.38 to -81.25). Body temperature was associated independently with clinically significant QT shortening of 2.80 milliseconds (95% CI: -3.17 to -2.42) per 1°C increase. Study limitations include that it was not possible to assess the effect of other factors that may affect the QT interval but are not consistently collected in malaria clinical trials.
Conclusions: Adjustment for malaria and fever-recovery-related QT lengthening is necessary to avoid misattributing malaria-disease-related QT changes to antimalarial drug effects. This would improve risk assessments of antimalarial-related cardiotoxicity in clinical research and practice. Similar adjustments may be indicated for other febrile illnesses for which QT-interval-prolonging medications are important therapeutic options.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7058280 | PMC |
http://dx.doi.org/10.1371/journal.pmed.1003040 | DOI Listing |
Rev Sci Instrum
October 2024
Univ. Grenoble Alpes, CNRS, LIPhy, f-38000 Grenoble, France.
Lyophobic heterogeneous systems, based on porous fluids made of ordered nanoporous particles immersed in a non-wetting liquid, constitute systems of interest for exploring wetting, drying, and coupled transport phenomena in nanometric confinement. To date, most experimental studies on the forced filling and spontaneous emptying of lyophobic nanometric pores, at pressures of several tens of MPa, have been conducted in a quasi-static regime. However, some studies have shown that dynamical measurements are essential to shed light on the rich physics of these phenomena.
View Article and Find Full Text PDFMov Ecol
October 2024
Department of Migration, Max Planck Institute of Animal Behavior, 78315, Radolfzell, Germany.
Time-synchronised data streams from bio-loggers are becoming increasingly important for analysing and interpreting intricate animal behaviour including split-second decision making, group dynamics, and collective responses to environmental conditions. With the increased use of AI-based approaches for behaviour classification, time synchronisation between recording systems is becoming an essential challenge. Current solutions in bio-logging rely on manually removing time errors during post processing, which is complex and typically does not achieve sub-second timing accuracies.
View Article and Find Full Text PDFAnimals (Basel)
October 2024
Zhongrun Agriculture and Animal Husbandry Technology (Zhejiang) Co., Ltd., Jinhua 321000, China.
Bioengineering (Basel)
October 2024
Faculty of Electrical Engineering and Computer Science, University of Maribor, 2000 Maribor, Slovenia.
This paper presents a real-time wearable system designed to assist Parkinson's disease patients experiencing freezing of gait episodes. The system utilizes advanced machine learning models, including convolutional and recurrent neural networks, enhanced with past sample data preprocessing to achieve high accuracy, efficiency, and robustness. By continuously monitoring gait patterns, the system provides timely interventions, improving mobility and reducing the impact of freezing episodes.
View Article and Find Full Text PDFRev Sci Instrum
October 2024
State Key Laboratory of Superhard Materials, Synergetic Extreme Condition User Facility, College of Physics, Jilin University, Changchun 130012, China.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!