Understanding ion transport mechanisms in the flow expansion section of the first vacuum region of a mass spectrometer (MS) with an atmospheric pressure ionization source is essential for optimizing the MS sampling interface design. In this study, numerical simulations of three types of ions in two different MS interface designs have been carried out. In contrast to previously reported numerical studies, nonequilibrium gas dynamics due to rarefied gas effects has been considered in modeling the flow expansion and a realistic space charge effect has been considered in a continuous ion injection mode. Numerical simulations reveal that a flat plate interface has a higher peak buffer gas velocity but a narrower zone of silence compared to the conical interface. Shock wave structures are clearly captured, and the Knudsen number distribution is displayed. Simulation results show that in the axial direction the buffer gas effect is much stronger than the electric force effect in the current configuration. The conical interface leads to both a strong ion acceleration in the zone of silence and a strong ion deceleration downstream. In the radial direction, both the electric force and buffer gas drag force play an important role. The conical interface introduces a relatively stronger ion focusing effect from the radial buffer gas effect and a stronger ion dispersion from the radial electric force than the flat plate interface. The net effect for the current configuration is an increase in ion losses for the conical interface. Nanoelectrospray ionization experiments were carried out to validate the ion transmission efficiency.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jasms.9b00103 | DOI Listing |
GMS Hyg Infect Control
December 2024
Uzun Mehmet Chest and Work Diseases Hospital, Medical Microbiology Dept, Zonguldak, Turkey.
Background: The use of laryngeal masks (LM) has increased widely today, both in anesthesia and in emergency cases. LM are available as reusable and disposable. Although reuse of disposable LM is not recommended, they are reused again after decontamination with different methods in anesthesia units in some countries.
View Article and Find Full Text PDFNanoscale
January 2025
Department of Chemistry, Faculty of Science, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan.
We report photodissociation processes and spectral measurements upon photoabsorption of size-selected cationic silver clusters, Ag, stored in an ion trap. The experiment shows that small clusters ( ≲ 15) dissociate upon one-photon absorption, whereas larger ones require multiple photons up to five in the present study. The emergence of multi-photon processes is attributed to collisional cooling in the presence of a buffer helium gas in the trap, which competes with size-dependent dissociation rates.
View Article and Find Full Text PDFSci Rep
January 2025
Laboratoire d'Ingenierie des Systemes Physiques et Numeriques, 59046, Lille, France.
The demand for efficient Industry 4.0 systems has driven the need to optimize production systems, where effective scheduling is crucial. In smart manufacturing, robots handle material transfers, making precise scheduling essential for seamless operations.
View Article and Find Full Text PDFAnal Chim Acta
February 2025
Chemical and Petroleum Engineering Department, Sharif University of Technology, Tehran, Iran.
Background: Bee venom consists of more than 50 % melittin (MLT), which has anti-cancer, anti-inflammatory, and antimicrobial properties. Bee venom also contains toxic components such as phospholipase A2 (PLA2) and hyaluronidase (HYA), which cause allergic reactions, so the toxic components must be removed to use MLT. In previous studies, analytical methods were used to separate MLT.
View Article and Find Full Text PDFTrop Anim Health Prod
January 2025
Federal Institute of Education Science and Technology of Piauí (IFPI), Campus of José de Freitas, Rua da Barragem Do Bezerro, S/N, Bezerro, José de Freitas, PI, 64110-000, Brazil.
The Caatinga biome has a wide variety of plants which, despite their irregular distribution, are frequently used to feed animals. This study aimed to evaluate the gas production kinetics of Caatinga plants: Malva (Herissantia crispa), Aroeira (Myracrodruon urundeuva), Marmeleiro (Croton sonderianus), and Bamburral (Hyptis suaveolens). Buffel grass (Cenchrus ciliaris), a cultivated forage, was used as a control.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!