Density Functional Computations of Vibrational Circular Dichroism Spectra beyond the Born-Oppenheimer Approximation.

J Chem Theory Comput

Institute of Organic Chemistry and Biochemistry, Academy of Sciences, Flemingovo náměstí 2, 16610 Prague, Czech Republic.

Published: April 2020

Transition-metal complexes provide rich features in vibrational circular dichroism (VCD) spectra, including significant intensity enhancements, and become thus useful in structural and functional studies of molecules. Quite often, however, the vibrational spectral bands are mixed with the electronic ones, and interpretation of such experiments is difficult. In the present study, we elaborate on the theory needed to calculate the VCD intensities beyond the Born-Oppenheimer (BO) approximation. Within a perturbation approach, the coupling between the electronic and vibrational states is estimated using the harmonic approximation and simplified wave functions obtainable from common density functional theory (DFT) computations. Explicit expressions, including Slater determinants and derivatives of molecular orbitals, are given. On a model diamine complex, the implementation is tested and factors affecting spectral intensities and frequencies are investigated. For two larger molecules, the results are in a qualitative agreement with previous experimental data. Typically, the electronic-vibrational interaction Hamiltonian coupling elements are rather small (∼0 to 10 cm), which provides negligible contributions to vibrational frequencies and absorption intensities. However, significant changes in VCD spectra are induced due to the large transition magnetic dipole moment associated with the d-d metal transitions. The possibility to model the spectra beyond the BO limit opens the way to further applications of chiral spectroscopy and transition-metal complexes.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jctc.0c00081DOI Listing

Publication Analysis

Top Keywords

density functional
8
vibrational circular
8
circular dichroism
8
born-oppenheimer approximation
8
transition-metal complexes
8
vcd spectra
8
vibrational
5
functional computations
4
computations vibrational
4
spectra
4

Similar Publications

Garner, C, Nachtegall, A, Roth, E, Sterenberg, A, Kim, D, Michael, T, and Lee, S. Effects of movement sonification auditory feedback on repetitions and brain activity during the bench press. J Strength Cond Res 38(12): 2022-2028, 2024-Auditory stimulation and feedback have been found to enhance aspects of motor performance such as motor learning, sense of agency, and movement execution.

View Article and Find Full Text PDF

Rational Design of Prussian Blue Analogues for Ultralong and Wide-Temperature-Range Sodium-Ion Batteries.

J Am Chem Soc

January 2025

Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, State Key Laboratory of Crystal Material, Shandong University, Jinan 250100, China.

Architecting Prussian blue analogue (PBA) cathodes with optimized synergistic bimetallic reaction centers is a paradigmatic strategy for devising high-energy sodium-ion batteries (SIBs); however, these cathodes usually suffer from fast capacity fading and sluggish reaction kinetics. To alleviate the above problems, herein, a series of early transition metal (ETM)-late transition metal (LTM)-based PBA (Fe-VO, Fe-TiO, Fe-ZrO, Co-VO, and Fe-Co-VO) cathode materials have been conveniently fabricated via an "acid-assisted synthesis" strategy. As a paradigm, the FeVO-PBA (FV) delivers a superb rate capability (148.

View Article and Find Full Text PDF

The mechanisms of NO reduction by CO over nitrogen-doped graphene (N-graphene)-supported single-atom Ni catalysts in the presence of O, HO, CO, and SO have been studied via density functional theory (DFT) modeling. The catalyst is represented by a single Ni atom bonded to four N atoms on N-graphene. Several alternative reaction pathways, including adsorption of NO on the Ni site, direct reduction of NO by CO, decomposition of NO to NO followed by reduction of NO to N, formation of active oxygen radical O*, and reduction of O* by CO, were hypothesized and the energy barrier corresponding to each of the reaction steps was calculated using DFT.

View Article and Find Full Text PDF

The relative reactivity and cis/trans selectivity of the intramolecular [3+2] cycloaddition (IM32CA) reactions of nitrile oxide (NO), azide (AZ), nitrile sulfide (NS) and nitrile ylide (NY), leading to functionalized heterocycles are studied within the Molecular Electron Density Theory. The kinetically controlled IM32CA reactions are predicted to be cis stereospecific, while the reaction feasibility follows the order NY > NS > NO > AZ with the respective activation Gibbs free energies of 13.7, 17.

View Article and Find Full Text PDF

Cu-Ni Oxidation Mechanism Unveiled: A Machine Learning-Accelerated First-Principles and TEM Study.

Nano Lett

January 2025

Department of Mechanical Engineering & Materials Science, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States.

The development of accurate methods for determining how alloy surfaces spontaneously restructure under reactive and corrosive environments is a key, long-standing, grand challenge in materials science. Using machine learning-accelerated density functional theory and rare-event methods, in conjunction with environmental transmission electron microscopy (ETEM), we examine the interplay between surface reconstructions and preferential segregation tendencies of CuNi(100) surfaces under oxidation conditions. Our modeling approach predicts that oxygen-induced Ni segregation in CuNi alloys favors Cu(100)-O c(2 × 2) reconstruction and destabilizes the Cu(100)-O (2√2 × √2)45° missing row reconstruction (MRR).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!