Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
This study was aimed at evaluating the potential of barley β-glucan concentrates (native and partially hydrolyzed) in modifying the techno-functionality of rice flour dough. β-Glucan concentrate was partially hydrolyzed to obtain a low molecular weight polymer and their influence on the pasting, rheological, and thermal properties of rice dough were assessed. Hydration, thermal, and pasting properties were significantly modified with the added β-glucans. The rice dough supplemented with β-glucan concentrates showed improved viscoelastic and creep behavior and the effectiveness of β-glucans in imparting strength to rice dough depended on its molecular weight. Hydrolyzed β-glucan concentrates having low molecular weight increased dough elasticity to the greater extent in comparison to native β-glucan concentrates. The micrographs of supplemented dough showed a strong and dense network indicating improved structure and strength.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/jtxs.12520 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!