Beyond the Blood: CSF-Derived cfDNA for Diagnosis and Characterization of CNS Tumors.

Front Cell Dev Biol

Department of Laboratory Medicine, University of Washington, Seattle, WA, United States.

Published: February 2020

Genetic data are rapidly becoming part of tumor classification and are integral to prognosis and predicting response to therapy. Current molecular tumor profiling relies heavily on tissue resection or biopsy. Tissue profiling has several disadvantages in tumors of the central nervous system, including the challenge associated with invasive biopsy, the heterogeneous nature of many malignancies where a small biopsy can underrepresent the mutational profile, and the frequent lack of obtaining a repeat biopsy, which limits routine monitoring to assess therapy response and/or tumor evolution. Circulating tumor, cell-free DNA (cfDNA), has been proposed as a liquid biopsy to address some limitations of tissue-based genetics. In cancer patients, a portion of cfDNA is tumor-derived and may contain somatic genetic alterations. In central nervous system (CNS) neoplasia, plasma tumor-derived cfDNA is very low or absent, likely due to the blood brain barrier. Interrogating cfDNA in cerebrospinal fluid (CSF) has several advantages. Compared to blood, CSF is paucicellular and therefore predominantly lacks non-tumor cfDNA; however, patients with CNS-limited tumors have significantly enriched tumor-derived cfDNA in CSF. In patients with metastatic CNS disease, mutations in CSF cfDNA are most concordant with the intracranial process. CSF cfDNA can also occasionally uncover additional genetic alterations absent in concurrent biopsy specimens, reflecting tumor heterogeneity. Although CSF is enriched for tumor-derived cfDNA, absolute quantities are low. Highly sensitive, targeted methods including next-generation sequencing and digital PCR are required to detect mutations in CSF cfDNA. Additional technical and bioinformatic approaches also facilitate enhanced ability to detect tumor mutations in CSF cfDNA.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7039816PMC
http://dx.doi.org/10.3389/fcell.2020.00045DOI Listing

Publication Analysis

Top Keywords

csf cfdna
16
cfdna
12
tumor-derived cfdna
12
mutations csf
12
central nervous
8
nervous system
8
genetic alterations
8
csf
8
enriched tumor-derived
8
tumor
6

Similar Publications

Gliomas are the most common brain tumor type in children and adolescents. To date, diagnosis and therapy monitoring for these tumors rely on magnetic resonance imaging (MRI) and histopathological as well as molecular analyses of tumor tissue. Recently, liquid biopsies (LB) have emerged as promising tool for diagnosis and longitudinal tumor assessment potentially allowing for a more precise therapeutic management.

View Article and Find Full Text PDF

Low-Pass Whole Genome Sequencing of Cell-Free DNA from Cerebrospinal Fluid: A Focus on Pediatric Central Nervous System Tumors.

Clin Chem

January 2025

Division of Hematology, Oncology, Bone Marrow Transplant & Cellular Therapy, Department of Pediatrics, Seattle Children's Hospital, University of Washington, Seattle, WA, United States.

Background: Cell-free DNA (cfDNA) technology has allowed for cerebrospinal fluid (CSF), a previously underutilized biofluid, to be analyzed in new ways. The interrogation of CSF-derived cfDNA is giving rise to novel molecular insights, particularly in pediatric central nervous system (CNS) tumors, where invasive tumor tissue acquisition may be challenging. Contemporary disease monitoring is currently restricted to radiographic surveillance by magnetic resonance imaging and CSF cytology to directly detect abnormal cells and cell clusters.

View Article and Find Full Text PDF

Purpose: Current methods for glioma response assessment are limited. This study aimed to assess the technical and clinical feasibility of molecular profiling using longitudinal intracranial CSF from patients with gliomas.

Experimental Design: Adults with gliomas underwent longitudinal intracranial CSF collection via Ommaya reservoirs or ventriculoperitoneal shunts.

View Article and Find Full Text PDF

Clinical utility and predictive value of cerebrospinal fluid cell-free DNA profiling in non-small cell lung cancer patients with leptomeningeal metastasis.

Neoplasia

December 2024

Department of Internal Medicine, National Taiwan University Hospital and College of Medicine, National Taiwan University, Taipei, Taiwan; Department of Internal Medicine, National Taiwan University Hospital Hsinchu Branch, Hsinchu, Taiwan.

Leptomeningeal metastasis (LM) is a challenging complication of non-small cell lung cancer (NSCLC). Cerebrospinal fluid (CSF) cell-free DNA (cfDNA) analysis using next-generation sequencing (NGS) offers insights into resistance mechanisms and potential treatment strategies. We conducted a study from February 2022 to April 2023 involving patients from five hospitals in Taiwan who had recurrent or advanced NSCLC with LM.

View Article and Find Full Text PDF

Glioma is the most common primary malignant brain tumor. Despite significant advances in the past decade in understanding the molecular pathogenesis of this tumor and exploring therapeutic strategies, the prognosis of patients with glioma remains poor. Accurate diagnosis of glioma is very important for the treatment and prognosis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!