A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Tissue imaging depth limit of stimulated Raman scattering microscopy. | LitMetric

Tissue imaging depth limit of stimulated Raman scattering microscopy.

Biomed Opt Express

Department of Chemistry, University of Washington, Seattle, Washington 98195, USA.

Published: February 2020

Stimulated Raman scattering (SRS) microscopy is a promising technique for studying tissue structure, physiology, and function. Similar to other nonlinear optical imaging techniques, SRS is severely limited in imaging depth due to the turbidity and heterogeneity of tissue, regardless of whether imaging in the transmissive or epi mode. While this challenge is well known, important imaging parameters (namely maximum imaging depth and imaging signal to noise ratio) have rarely been reported in the literature. It is also important to compare epi mode and transmissive mode imaging to determine the best geometry for many tissue imaging applications. In this manuscript we report the achievable signal sizes and imaging depths using a simultaneous epi/transmissive imaging approach in four different murine tissues; brain, lung, kidney, and liver. For all four cases we report maximum signal sizes, scattering lengths, and achievable imaging depths as a function of tissue type and sample thickness. We report that for murine brain samples thinner than 2 mm transmissive imaging provides better results, while samples 2 mm and thicker are best imaged with epi imaging. We also demonstrate the use of a CNN-based denoising algorithm to yield a 40 µm (24%) increase in achievable imaging depth.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7041472PMC
http://dx.doi.org/10.1364/BOE.382396DOI Listing

Publication Analysis

Top Keywords

imaging depth
16
imaging
14
tissue imaging
12
stimulated raman
8
raman scattering
8
epi mode
8
signal sizes
8
imaging depths
8
achievable imaging
8
tissue
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!