The launch of the big data era puts forward challenges for information preservation technology, both in storage capacity and security. Herein, a brand new optical storage medium, transparent glass ceramic (TGC) embedded with photostimulated LiGaO: Mn nanocrystals, capable of achieving bit-by-bit optical data write-in and read-out in a photon trapping/detrapping mode, is developed. The highly ordered nanostructure enables light-matter interaction with high encoding/decoding resolution and low bit error rate. Importantly, going beyond traditional 2D optical storage, the high transparency of the studied bulk medium makes 3D volumetric optical data storage (ODS) possible, which brings about the merits of expanded storage capacity and improved information security. Demonstration application confirmed the erasable-rewritable 3D storage of binary data and display items in TGC with intensity/wavelength multiplexing. The present work highlights a great leap in photostimulated material for ODS application and hopefully stimulates the development of new multi-dimensional ODS media.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7028715 | PMC |
http://dx.doi.org/10.1038/s41377-020-0258-3 | DOI Listing |
Acc Chem Res
January 2025
State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China.
ConspectusRare earth (RE) elements, due to their unique electronic structures, exhibit excellent optical, electrical, and magnetic properties and thus have found widespread applications in the fields of electronics, optics, and biomedicine. A significant advancement in the use of RE elements is the formation of RE complexes. RE complexes, created by the coordination of RE ions with organic ligands, not only offer high molecular design flexibility but also incorporate features such as a broad absorption band and efficient energy transfer of organic ligands.
View Article and Find Full Text PDFNat Commun
January 2025
Electronic Materials Research Laboratory & Multifunctional Materials and Structures, Key Laboratory of the Ministry of Education & International Center for Dielectric Research, School of Electronic Science and Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, China.
Multilayer ceramic capacitor as a vital core-component for various applications is always in the spotlight. Next-generation electrical and electronic systems elaborate further requirements of multilayer ceramic capacitors in terms of higher energy storage capabilities, better stabilities, environmental-friendly lead-free, etc., where these major obstacles may restrict each other.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Jieyang Branch of Chemistry and Chemical Engineering Guangdong Laboratory, Jieyang 515200, China.
Optical physical unclonable functions (PUFs) are gaining attention as a robust security solution for identification in the expanding Internet of Things (IoT). To enhance the security and functionality of PUFs, integrating multiple optical responses─such as fluorescence and structural color─into a single system is essential. These diverse optical properties enable multilevel authentication, where different layers of security can be verified under varying light conditions, greatly reducing the risk of counterfeiting.
View Article and Find Full Text PDFLight Sci Appl
January 2025
Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany.
Nature
January 2025
Department of Mechanical Engineering, Columbia University, New York, NY, USA.
Mechanical force is an essential feature for many physical and biological processes, and remote measurement of mechanical signals with high sensitivity and spatial resolution is needed for diverse applications, including robotics, biophysics, energy storage and medicine. Nanoscale luminescent force sensors excel at measuring piconewton forces, whereas larger sensors have proven powerful in probing micronewton forces. However, large gaps remain in the force magnitudes that can be probed remotely from subsurface or interfacial sites, and no individual, non-invasive sensor is capable of measuring over the large dynamic range needed to understand many systems.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!