The specific role of the autonomic nervous system (ANS) in emotional and behavioral regulation-particularly in relation to automatic processes-has gained increased attention in the sensory modulation literature. This mini-review article summarizes current knowledge about the role of the ANS in sensory modulation, with a focus on the integrated functions of the ANS and the hypothalamic-pituitary-adrenal (HPA) axis and their measurement. Research from the past decade illustrates that sympathetic and parasympathetic interactions are more complex than previously assumed. Patterns of ANS activation vary across individuals, with distinct physiological response profiles influencing the reactivity underlying automatic behavioral responses. This review article advances a deeper understanding of stress and the complex stress patterns within the ANS and HPA axis that contribute to allostatic load (AL). We argue that using multiple physiological measurements to capture individual ANS response variation is critical for effectively treating children with sensory modulation disorder (SMD) and sensory differences. We consider the relative contributions of automatic vs. deliberately controlled processes across large-scale neural networks in the development of sensorimotor function and their associated links with arousal patterns and sensory over- and under-responsivity.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7040227PMC
http://dx.doi.org/10.3389/fnint.2020.00006DOI Listing

Publication Analysis

Top Keywords

sensory modulation
16
autonomic nervous
8
nervous system
8
hpa axis
8
patterns ans
8
sensory
6
ans
6
diverse autonomic
4
system stress
4
stress response
4

Similar Publications

Electric transportation and electroreception in hummingbird flower mites.

Proc Natl Acad Sci U S A

February 2025

School of Biological Sciences, Life Sciences Department, University of Bristol, Bristol BS8 1TQ, England.

Electric fields in terrestrial environments are used by caterpillars to detect their predators, as foraging cues by pollinators, and facilitate ballooning by spiders. This study shows that electric fields facilitate transportation and detection of hummingbirds in a guild of tropical phoretic mites. Hummingbird flower mites feed on nectar and pollen and complete their life cycle inside flowers.

View Article and Find Full Text PDF

Nutrition: A non-negligible factor in the pathogenesis and treatment of Alzheimer's disease.

Alzheimers Dement

January 2025

Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, Xicheng District, Beijing, China.

Alzheimer's disease (AD) is a degenerative disease characterized by progressive cognitive dysfunction. The strong link between nutrition and the occurrence and progression of AD pathology has been well documented. Poor nutritional status accelerates AD progress by potentially aggravating amyloid beta (Aβ) and tau deposition, exacerbating oxidative stress response, modulating the microbiota-gut-brain axis, and disrupting blood-brain barrier function.

View Article and Find Full Text PDF

Background And Hypothesis: We have reported previously a reduction in superior temporal gyrus (STG) activation and in auditory verbal hallucinations (AHs) after real-time fMRI neurofeedback (NFB) in schizophrenia patients with AHs.

Study Design: With this randomized, participant-blinded, sham-controlled trial, we expanded our previous results. Specifically, we examined neurofeedback effects from the STG, an area associated with auditory hallucinations.

View Article and Find Full Text PDF

Unraveling the functional complexity of the locus coeruleus-norepinephrine system: insights from molecular anatomy to neurodynamic modeling.

Cogn Neurodyn

December 2025

The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Institute of Health and Rehabilitation Science, Xi'an Jiaotong University, Xi'an, 710049 Shaanxi China.

The locus coeruleus (LC), as the primary source of norepinephrine (NE) in the brain, is central to modulating cognitive and behavioral processes. This review synthesizes recent findings to provide a comprehensive understanding of the LC-NE system, highlighting its molecular diversity, neurophysiological properties, and role in various brain functions. We discuss the heterogeneity of LC neurons, their differential responses to sensory stimuli, and the impact of NE on cognitive processes such as attention and memory.

View Article and Find Full Text PDF

Physiological processes such as the sleep-wake cycle, metabolism, hormone secretion, neurotransmitter release, sensory capabilities, and a variety of behaviors, including sleep, are controlled by a circadian rhythm adapted to 24-hour day-night periodicity. Disruption of circadian rhythm may lead to the risks of numerous diseases, including cancers. Several epidemiological and clinical data reveal a connection between the disruption of circadian rhythms and cancer.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!