Studies of two-dimensional electron systems in a strong magnetic field revealed the quantum Hall effect, a topological state of matter featuring a finite Chern number C and chiral edge states. Haldane later theorized that Chern insulators with integer quantum Hall effects could appear in lattice models with complex hopping parameters even at zero magnetic field. The ABC-trilayer graphene/hexagonal boron nitride (ABC-TLG/hBN) moiré superlattice provides an attractive platform with which to explore Chern insulators because it features nearly flat moiré minibands with a valley-dependent, electrically tunable Chern number. Here we report the experimental observation of a correlated Chern insulator in an ABC-TLG/hBN moiré superlattice. We show that reversing the direction of the applied vertical electric field switches the moiré minibands of ABC-TLG/hBN between zero and finite Chern numbers, as revealed by large changes in magneto-transport behaviour. For topological hole minibands tuned to have a finite Chern number, we focus on quarter filling, corresponding to one hole per moiré unit cell. The Hall resistance is well quantized at h/2e (where h is Planck's constant and e is the charge on the electron), which implies C = 2, for a magnetic field exceeding 0.4 tesla. The correlated Chern insulator is ferromagnetic, exhibiting substantial magnetic hysteresis and a large anomalous Hall signal at zero magnetic field. Our discovery of a C = 2 Chern insulator at zero magnetic field should open up opportunities for discovering correlated topological states, possibly with topological excitations, in nearly flat and topologically nontrivial moiré minibands.

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41586-020-2049-7DOI Listing

Publication Analysis

Top Keywords

magnetic field
20
chern insulator
16
correlated chern
12
moiré superlattice
12
finite chern
12
chern number
12
moiré minibands
12
chern
10
quantum hall
8
chern insulators
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!