β-1,3-d-Glucan is a ubiquitous glucose polymer produced by plants, bacteria, and most fungi. It has been used as a diagnostic tool in patients with invasive mycoses via a highly-sensitive reagent consisting of the blood coagulation system of horseshoe crab. However, no method is currently available for measuring β-1,6-glucan, another primary β-glucan structure of fungal polysaccharides. Herein, we describe the development of an economical and highly-sensitive and specific assay for β-1,6-glucan using a modified recombinant endo-β-1,6-glucanase having diminished glucan hydrolase activity. The purified β-1,6-glucanase derivative bound to the β-1,6-glucan pustulan with a of 16.4 nm We validated the specificity of this β-1,6-glucan probe by demonstrating its ability to detect cell wall β-1,6-glucan from both yeast and hyphal forms of the opportunistic fungal pathogen , without any detectable binding to glucan lacking the long β-1,6-glucan branch. We developed a sandwich ELISA-like assay with a low limit of quantification for pustulan (1.5 pg/ml), and we successfully employed this assay in the quantification of extracellular β-1,6-glucan released by >250 patient-derived strains of different species (including ) in culture supernatant We also used this assay to measure β-1,6-glucan in the serum and in several organs in a mouse model of systemic candidiasis. Our work describes a reliable method for β-1,6-glucan detection, which may prove useful for the diagnosis of invasive fungal infections.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7170528 | PMC |
http://dx.doi.org/10.1074/jbc.RA119.011851 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!