Increased plasma concentrations of lipoprotein(a) (Lp(a)) are associated with an increased risk for cardiovascular disease. Lp(a) is composed of apolipoprotein(a) (apo(a)) covalently bound to apolipoprotein B of low-density lipoprotein (LDL). Many of apo(a)'s potential pathological properties, such as inhibition of plasmin generation, have been attributed to its main structural domains, the kringles, and have been proposed to be mediated by their lysine-binding sites. However, available small-molecule inhibitors, such as lysine analogs, bind unselectively to kringle domains and are therefore unsuitable for functional characterization of specific kringle domains. Here, we discovered small molecules that specifically bind to the apo(a) kringle domains KIV-7, KIV-10, and KV. Chemical synthesis yielded compound AZ-05, which bound to KIV-10 with a of 0.8 μm and exhibited more than 100-fold selectivity for KIV-10, compared with the other kringle domains tested, including plasminogen kringle 1. To better understand and further improve ligand selectivity, we determined the crystal structures of KIV-7, KIV-10, and KV in complex with small-molecule ligands at 1.6-2.1 Å resolutions. Furthermore, we used these small molecules as chemical probes to characterize the roles of the different apo(a) kringle domains in assays. These assays revealed the assembly of Lp(a) from apo(a) and LDL, as well as potential pathophysiological mechanisms of Lp(a), including (i) binding to fibrin, (ii) stimulation of smooth-muscle cell proliferation, and (iii) stimulation of LDL uptake into differentiated monocytes. Our results indicate that a small-molecule inhibitor targeting the lysine-binding site of KIV-10 can combat the pathophysiological effects of Lp(a).

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7152747PMC
http://dx.doi.org/10.1074/jbc.RA119.011251DOI Listing

Publication Analysis

Top Keywords

kringle domains
24
kiv-7 kiv-10
12
kringle
8
domains kiv-7
8
small molecules
8
apoa kringle
8
domains
7
kiv-10
6
lpa
5
identification analyses
4

Similar Publications

The tropism of adenoviruses (Ads) is significantly influenced by the binding of various blood factors. To investigate differences in their binding, we conducted cryo-EM analysis on complexes of several human adenoviruses with human platelet factor-4 (PF4), coagulation factors FII (Prothrombin), and FX. While we observed EM densities for FII and FX bound to all the species-C adenoviruses examined, no densities were seen for PF4, even though PF4 can co-pellet with various Ads.

View Article and Find Full Text PDF

Background: Recombinant plasminogen activator (r-PA) consists of the Kringle-2 and protease domains of human tissue-type plasminogen. It is used clinically to treat coronary artery thrombosis and acute myocardial infarction. However, the expression and production of reteplase (r-PA) are limited due to its susceptibility to proteolysis during manufacturing processes.

View Article and Find Full Text PDF

Tumor growth depends on angiogenesis, a process by which new blood vessel are formed from pre-existing normal blood vessels. Proteolytic fragments of plasminogen, containing varying numbers of plasminogen kringle domains, collectively known as angiostatin, are a naturally occurring inhibitor of angiogenesis and inhibit tumor growth. We have developed an "affinity-capture reactor" that enables a single-step method for the production/purification of an angiostatin-like plasminogen fragment from human plasma using an immobilized bacterial metalloproteinase.

View Article and Find Full Text PDF

Background: In the SPARCL (Stroke Prevention by Aggressive Reduction in Cholesterol levels) trial, atorvastatin (80 mg/d) was compared to placebo in patients with recent stroke or transient ischemic attack (TIA) and no known coronary artery disease.

Objectives: This study aimed to assess the contribution of lipoprotein(a) [Lp(a)] to subsequent cerebrovascular and cardiovascular events in stroke/TIA survivors.

Methods: Lp(a) levels and apolipoprotein(a) [apo(a)] isoform size were determined by liquid-chromatography mass spectrometry in samples collected at baseline from 2,814 SPARCL participants (1,418 randomized to atorvastatin and 1,396 to placebo).

View Article and Find Full Text PDF

Codon switching of conserved Ser residues in coagulation and fibrinolytic proteases.

J Thromb Haemost

September 2024

Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St Louis, Missouri, USA. Electronic address:

Background: Unique among all amino acids, Ser is encoded by 2 sets of codons, TCN and AGY (N = any nucleotide, Y = pyrimidine), that cannot interconvert through single nucleotide substitutions. Both codons are documented at the essential residues S195 and S214 within the active site of serine proteases. However, it is not known how the codons interconverted during evolution because replacement of S195 or S214 by other amino acids typically results in loss of activity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!