Photochemical Aqueous-Phase Reactions Induce Rapid Daytime Formation of Oxygenated Organic Aerosol on the North China Plain.

Environ Sci Technol

State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, P. R. China.

Published: April 2020

Secondary organic aerosol (SOA) constitutes a large fraction of organic aerosol worldwide, however, the formation mechanisms in polluted environments remain poorly understood. Here we observed fast daytime growth of oxygenated organic aerosol (OOA) (with formation rates up to 10 μg m h) during low relative humidity (RH, daytime average 38 ± 19%), high RH (53 ± 19%), and fog periods (77 ± 13%, fog occurring during nighttime with RH reaching 100%). Evidence showed that photochemical aqueous-phase SOA (aqSOA) formation dominantly contributed to daytime OOA formation during the periods with nighttime fog, while both photochemical aqSOA and gas-phase SOA (gasSOA) formation were important during other periods with the former contributing more under high RH and the latter under low RH conditions, respectively. Compared to daytime photochemical aqSOA production, dark aqSOA formation was only observed during the fog period and contributed negligibly to the increase in OOA concentrations due to fog scavenging processes. The rapid daytime aging, as indicated by the rapid decrease in ,-xylene/ethylbenzene ratios, promoted the daytime formation of precursors for aqSOA formation, e.g., carbonyls such as methylglyoxal. Photooxidants related to aqSOA formation such as OH radical and HO also bear fast daytime growth features even under low solar radiative conditions. The simultaneous increases in ultraviolet radiation, photooxidant, and aqSOA precursor levels worked together to promote the daytime photochemical aqSOA formation. We also found that biomass burning emissions can promote photochemical aqSOA formation by adding to the levels of aqueous-phase photooxidants and aqSOA precursors. Therefore, future mitigation of air pollution in a polluted environment would benefit from stricter control on biomass burning especially under high RH conditions.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.est.9b06836DOI Listing

Publication Analysis

Top Keywords

aqsoa formation
24
organic aerosol
16
photochemical aqsoa
16
formation
12
aqsoa
10
daytime
9
photochemical aqueous-phase
8
rapid daytime
8
daytime formation
8
oxygenated organic
8

Similar Publications

Aqueous oxidation of pinanediol (PND) and camphanediol (CND) by hydroxyl radical (OH) was investigated using gas and liquid chromatography coupled with mass spectrometry. The yields of the products formed were measured with authentic and surrogate standards. This approach quantified >97% of the products for both reactions under investigation.

View Article and Find Full Text PDF

Phenolic compounds, which are significant emissions from biomass burning (BB), undergo rapid photochemical reactions in both gas and aqueous phases to form secondary organic aerosol, namely, gasSOA and aqSOA, respectively. The formation of gasSOA and aqSOA involves different reaction mechanisms, leading to different product distributions. In this study, we investigate the gaseous and aqueous reactions of guaiacol-a representative BB phenol-to elucidate the compositional differences between phenolic aqSOA and gasSOA.

View Article and Find Full Text PDF

β-caryophyllonic acid (BCA), as an important precursor of aqueous secondary organic aerosols (aqSOA), has adverse effects on the atmospheric environment and human health. However, the key atmospheric chemical reaction process in which BCA participates in the formation of aqueous secondary organic aerosols is still unclear. In this study, the reaction mechanism and kinetics of BCA with ·OH and O were investigated by quantum chemical calculations.

View Article and Find Full Text PDF

Organic compounds released from wildfires and residential biomass burning play a crucial role in shaping the composition of the atmosphere. The solubility and subsequent reactions of these compounds in the aqueous phase of clouds and fog remain poorly understood. Nevertheless, these compounds have the potential to become an important source of secondary organic aerosol (SOA).

View Article and Find Full Text PDF

Investigation of pyruvic acid photolysis at the air-liquid interface as a source of aqueous secondary organic aerosols.

Sci Total Environ

June 2024

Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN 37830-6136, United States. Electronic address:

Pyruvic acid (PA) is a ubiquitous 2-oxocarboxylic acid in the atmosphere. Its photochemical process at the air-liquid (a-l) interface has been suggested as an important source of aqueous secondary organic aerosols. We investigated the photochemical reaction pathways of PA at the a-l interface using synchrotron-based vacuum ultraviolet single-photon ionization mass spectrometry (VUV SPI-MS) coupled with the System for Analysis at the Liquid Vacuum Interface (SALVI) microreactor.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!