Lignin is one largely untapped natural resource that can be exploited as a raw material for the bioproduction of value-added chemicals. Meanwhile, the current petroleum-based process for the production of adipic acid faces sustainability challenges. Here we report the successful engineering of Pseudomonas putida KT2440 strain for the direct biosynthesis of adipic acid from lignin-derived aromatics. The devised bio-adipic acid route features an artificial biosynthetic pathway that is connected to the endogenous aromatics degradation pathway of the host at the branching point, 3-ketoadipoyl-CoA, by taking advantage of the unique carbon skeleton of this key intermediate. Studies of the metabolism of 3-ketoadipoyl-CoA led to the discovery of crosstalk between two aromatics degradation pathways in KT2440. This knowledge facilitated the formulation and implementation of metabolic engineering strategies to optimize the carbon flux into the biosynthesis of adipic acid. By optimizing pathway expression and cultivation conditions, an engineered strain AA-1 produced adipic acid at 0.76 g/L and 18.4% molar yield under shake-flask conditions and 2.5 g/L and 17.4% molar yield under fermenter-controlled conditions from common aromatics that can be derived from lignin. This represents the first example of the direct adipic acid production from model compounds of lignin depolymerization.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ymben.2020.02.006DOI Listing

Publication Analysis

Top Keywords

adipic acid
24
biosynthesis adipic
12
direct biosynthesis
8
acid lignin-derived
8
lignin-derived aromatics
8
pseudomonas putida
8
putida kt2440
8
aromatics degradation
8
molar yield
8
acid
7

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!