Background: High-mobility group box 1 (HMGB1) is one of the delayed pro-inflammatory cytokines produced in the later stages of pathogenesis and plays an important role in the progression of various inflammatory and autoimmune diseases. High-mobility group box 1 is able to stimulate interaction between integrins and cell adhesion molecules to facilitate cell-cell aggregation in "tissue-specific" endothelium; however, whether and how HMGB1 affects the adhesive capability of early acting immune cells in bloodstream remains largely unknown.
Methods: Human peripheral blood samples were collected from healthy adult donors. The CD4 T cells were isolated from blood using CD4 T cell isolation kit and identified using flow cytometry and immunofluorescence staining. The effect of HMGB1 on adhesive ability of CD4 T cells was accessed by cell self-aggregation assay and endothelial adhesion assay. The migratory ability of CD4 T cells was evaluated by cell migration assay. Secretion of pro-inflammatory cytokines or chemokine C-X-C motif chemokine 12 (CXCL12) were detected by ELISA. Expression of integrins β1, β7, and α4β7 were determined by flow cytometric analysis. Inhibition of integrins was achieved with anti-integrin antibodies or cyclic peptide inhibitors. Activation of signal transducers and activators of transcription 3 (STAT3) was measured by flow cytometry and fluorescent staining.
Results: High-mobility group box 1 facilitated CD4 T cell self-aggregation with simultaneous reduction of CD4 T single-cell counts in the bloodstream. The CD4 T cell self-aggregation induced by HMGB1 resulted in upregulation of integrins β1, β7, and α4β7; release of other pro-inflammatory cytokines or chemokine CXCL12; and activation of STAT3 signaling. Intriguingly, pro-inflammatory cytokines induced by HMGB1 could further amplify CD4 T cell self-aggregation. HMGB1 induced CD4 T cell apoptosis via activation of caspase-3/7. Furthermore, HMGB1 promoted migration and adhesion of CD4 T cells to endothelial cells.
Conclusions: These results provide proof of concept that HMGB1 promotes CD4 T cell self-aggregation before homing to inflammatory sites and highlight the potential of blocking immune cell self-aggregation in blood as a novel therapeutic approach against the development and progression of HMGB1-related inflammatory diseases.HMGB1 induces CD4 T cell self-aggregation in blood resulting in upregulation of integrins expression and release of pro-inflammatory cytokines/chemokines via activation of STAT3 signaling. This study highlights the potential of preventive and therapeutic intervention on immune cell self-aggregation in the bloodstream.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/ibd/izaa044 | DOI Listing |
Alzheimers Dement
December 2024
First Affiliated Hospital, Zhejiang University, Hangzhou, Zhejiang, China.
Background: Synaptic plasticity impairment plays a critical role in the pathogenesis of Alzheimer's disease (AD), Smad4, a central intracellular signal transmission mediator of transmission of transforming growth factor-β (TGF-β) signaling, plays a pivotal role in many biological processes, including cell differentiation, migration, apoptosis and tumorigenesis. Emerging evidence has demonstrated that Smad4 is also involved in the pathogenesis of AD. Once TGF-β signaling is stimulated, Smad4 interaction with Sp1 and Smad3 induces the transcriptional activation of APP.
View Article and Find Full Text PDFFront Cell Infect Microbiol
December 2024
Postdoctoral Research Workstation, Heilongjiang Academy of Agricultural Sciences, Harbin, China.
Lactic acid bacteria are widely regarded as safe alternatives to antibiotics in livestock and poultry farming and have probiotic potential. () is a prominent component of pigeon crop microbiota; however, its function is unknown. In this study, a strain of 1003 from pigeon cecum was identified by combining whole genome sequencing and phenotypic analysis, and its safety and probiotic properties were studied.
View Article and Find Full Text PDFJ Biosci Bioeng
December 2024
Institute of Frontier Science and Technology, Okayama University of Science, Okayama 700-0005, Japan. Electronic address:
Vascular-like tissues composed of cells maintaining their shape and structure at any position in a culture dish without the use of gels or other artificial materials are ideal vascular models to test the effects of candidate drugs on cells without adsorption by artificial materials and analysis of structural changes over time. In this study, we aimed to prepare fiber-shaped cell aggregates composed of human umbilical vein endothelial and mesenchymal stem cells as vascular pericytes anchored to the bottom of culture dishes at a defined location using our developed cell self-aggregation technique and dumbbell-shaped culture groove. The fiber-shaped cell aggregates maintained their shape for at least two weeks without rupture, and histological analysis revealed that they formed a unique tissue structure with a gapless endothelial layer on the outer surface and capillary-like structures oriented in the same direction as the long axis of the fiber in the medial side.
View Article and Find Full Text PDFInt J Pharm
December 2024
Laboratory of Biophysical Chemistry, Kobe Pharmaceutical University, 4-19-1 Motoyamakita-machi, Higashinada-ku, Kobe 658-8558 Japan.
The basic requirements for the development of radiopharmaceuticals for radionuclide therapy of tumors include marked tumor-specific accumulation and long-term intratumoral retention. We have previously reported an indium-111 (In)-labeled thermoresponsive polymer (polyoxazoline (POZ)) that is soluble at body temperature with rapid clearance from normal tissues but self-aggregates in the tumor upon tumor heating treatment. POZ accumulated in the tumor via self-aggregation under hyperthermic conditions and was retained after stopping heat exposure.
View Article and Find Full Text PDFJ Am Chem Soc
December 2024
College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China.
Intestinal bacterial infections have become a significant threat to human health. However, the current typical antibiotic-based therapies not only contribute to drug resistance but also disrupt gut microbiota balance, resulting in additional adverse effects on life activities. There is an urgent need to develop new antibacterial materials that selectively eliminate pathogenic bacteria without disrupting beneficial bacterial communities or promoting drug resistance.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!