Although the fungus is the most commonly detected causal agent of Petri disease and esca, two important fungal grapevine trunk diseases, little is known about the dispersal patterns of inoculum. In this work, we studied the dispersal of airborne inoculum from 2016 to 2018 in two viticultural areas of eastern (Ontinyent) and northern (Logroño) Spain. The vineyards were monitored weekly from November to April using microscope slide traps, and was detected and quantified by a specific real-time quantitative (qPCR) method set up in this work. The method was found to be sensitive, and a good correlation was observed between numbers of conidia (counted by microscope) and DNA copy numbers (quantified by qPCR). We consistently detected DNA of at both locations and in all seasons but in different quantities. In most cases, DNA was first detected in the last half of November, and most of the DNA was detected from December to early April. When rain was used as a predictor of DNA detection in traps, false-negative detections were observed, but these involved only 4% of the total. The dispersal pattern of DNA over time was best described ( = 0.765 and concordance correlation coefficient = 0.870) by a Gompertz equation, with time expressed as hydrothermal time (a physiological time accounting for the effects of temperature and rain). This equation could be used to predict periods with a high risk of dispersal of .
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1094/PHYTO-10-19-0400-R | DOI Listing |
Molecular surveillance of FMD epidemiology is a fundamental tool for advancing our understanding of virus biology, monitoring virus evolution, and guiding vaccine design. The accessibility of genetic data will facilitate a more comprehensive delineation of FMDV phylogeny on a global scale. In this study, we investigated the FMDV strains circulating in Russia during the 2013-2014 period in geographically distant regions utilizing whole genome sequencing followed by maximum-likelihood phylogenetic reconstruction of whole genome and VP1 gene sequences.
View Article and Find Full Text PDFPharmaceutics
December 2024
Department of Pharmacognosy and Biomaterials, Poznan University of Medical Sciences, 3 Rokietnicka St., 60-806 Poznan, Poland.
Curcumin and hesperetin are plant polyphenols known for their poor solubility. To address this limitation, we prepared amorphous PVP K30-phosphatidylcholine dispersions via hot-melt extrusion. This study aimed to evaluate the effects of the amounts of active ingredients and phosphatidylcholine, as well as the process temperature, on the performance of the dispersions.
View Article and Find Full Text PDFPolymers (Basel)
January 2025
Department of Mechanical Engineering, University of Massachusetts Lowell, Lowell, MA 01854, USA.
This study presents the design, modeling, and validation of a mixing screw for energy-efficient single-screw extrusion. The screw features a short length-to-diameter (L/D) ratio of 8:1 and incorporates double flights with variable pitch and counter-rotating mixing slots. These features promote enhanced plastication by breaking up the solid bed and improving thermal homogeneity through backflow mechanisms relieving a 3.
View Article and Find Full Text PDFMolecules
January 2025
Organization for Marine Science and Technology, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan.
High-Density Polyethylene (HDPE) and Low-Density Polyethylene (LDPE) films were used to create nanoplastic (NP) models, with the shape of delamination occurring during degradation. In the case of HDPE, selective degradation occurred not only in the amorphous part, but also in the crystalline part at the same time. Some of the lamellae that extend radially to form the spherulite structure were missing during the 30-day degradation.
View Article and Find Full Text PDFMolecules
January 2025
Faculty of Civil Engineering and Mechanics, Kunming University of Science and Technology, Kunming 650032, China.
The incorporation of reinforcing fillers into natural rubber latex (NR) to achieve superior elasticity and mechanical properties has been widely applied across various fields. However, the tendency of reinforcing fillers to agglomerate within NR limits their potential applications. In this study, multi-walled carbon nanotube (MWCNT)-silica (SiO)/NR composites were prepared using a solution blending method, aiming to enhance the performance of NR composites through the synergistic effects of dual-component fillers.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!